
1

Design and Control of a 3RPS-Stewart Platform for Precision Ball Balancing Using PID and Computer Vision

Jose Ismael Ramirez

Department of Mechanical Engineering

California State Polytechnic University, Pomona,

Pomona, USA

jiramirez@cpp.edu

Ethan D. Lendo

Department of Mechanical Engineering

California State Polytechnic University, Pomona,

Pomona, USA

edlendo@cpp.edu

Abstract— This paper presents the design and implementation of

a Stewart platform, a 3-DOF parallel manipulator with three linear

actuators, combining revolute, prismatic, and spherical joints. The

project aims to dynamically stabilize a ball on the platform by

precisely regulating its tilt angles using a combination of mechanical

design, mathematical modeling, and digital control system

implementation.

The core of the control system is a proportional-integral-

derivative (PID) algorithm, optimized to maintain the ball's position

at a designated setpoint on the platform. Real-time feedback is

provided by a computer vision camera sensor, operating at 60 frames

per second, which tracks the ball’s position and sends coordinates to

an Arduino Uno R4 microcontroller. Corrective actions calculated

by the controller achieved a settling time of 8.6 seconds,

demonstrating efficient stabilization.

The system's nonlinear dynamics were modeled using the Euler-

Lagrange method to derive stability criteria and inform the PID

design. Continuous-time stability analysis revealed marginal

stability, necessitating precise parameter tuning. A zero-order hold

method with a 0.2-second sampling time enabled discretization for

microcontroller implementation while maintaining performance.

Inverse kinematics translated control commands into stepper

motor actuator positions, allowing precise control of the platform’s

orientation. Iterative prototyping addressed challenges like joint

friction, resolution constraints, and motor limitations. The final

design featured a 1.5-foot diameter platform constructed of 3D-

printed components, and an aluminum platform, demonstrating a

balance between manufacturability and functionality.

This project underscores the integration of low-cost components

and open-source tools to develop scalable control systems. Potential

applications include robotics, automation, and precision handling.

Future work aims to incorporate faster microcontrollers for

improved response and expand functionality to handle more complex

dynamics.

Keywords—Stewart Platform, parallel manipulation, computer

vision tracking, dynamic stabilization, motion control system

I. INTRODUCTION

The Stewart platform is a type of parallel manipulator widely
recognized for its precision and versatility in applications such
as motion simulation, robotics, and automation. This project
aims to develop a simplified Stewart platform configured for
three degrees of freedom (3-DOF) to dynamically balance a ball.
The system combines mechanical design, mathematical
modeling, and control system implementation to achieve precise
motion control and stability.

The platform’s design focuses on cost-effectiveness and
scalability by integrating low-cost components such as an
Arduino microcontroller and a Pixy2 camera for computer

vision. A proportional-integral-derivative (PID) control
algorithm uses real-time feedback to adjust the platform’s tilt
angles and stabilize the ball. The system demonstrates how
advanced mechatronic concepts can be implemented with
accessible tools, making it a valuable case study for robotics and
educational research.

The following subsections detail the system’s key
components, including position detection and mechanical
construction, and outline their contributions to the overall design
and functionality.

A. Position Detection

Accurate position detection is vital for the success of the
ball-balancing system. The primary requirement of the position
sensor is to provide real-time feedback with sufficient resolution
and speed to track the ball's movement. After evaluating various
alternatives, including piezoelectric sensors and computer
vision, the Pixy2 camera sensor was selected due to its onboard
image processing capabilities and 60 frames per second speed.
This camera allows for effective tracking of the ball's position in
the X, Y, and Z axes without overburdening the microcontroller.

Figure 1: PixyMon Camera Feed

The Pixy2 camera simplifies image processing tasks by
filtering pixels, adjusting brightness, and setting signature
thresholds. These features reduce computational demands and
enable quick and accurate data transfer to the Arduino Uno R4
microcontroller. It simply sends out x, y, and z coordinates to be
interpreted by the Arduino. This combination ensures that
corrective actions can be calculated and executed in near real-
time. In Figure 1 above, the live camera feed can be seen as it
looks it the PixyMon software that is used to tune the cameras
parameters. Parameters such as pixel filtering, brightness, and
signature thresholds can all be modified in the software that is
included with the Pixy2 camera.

2

Alternative approaches, such as using multiple infrared or
ultrasonic and piezoelectric sensors, were considered but
deemed less effective due to their limited precision in
continuous tracking and increased system complexity. The
camera's ability to provide detailed positional data proved
crucial in achieving the project’s accuracy and responsiveness
goals.

B. Mechanical Construction

The mechanical construction of the platform, referred to as
the plant, plays a central role in ensuring stability and precision.
The primary requirements of the plant are rigidity, low friction
at joints, and compatibility with the chosen actuation methods.
A Stewart platform design was chosen for its inherent stability
and ability to achieve three degrees of freedom. Compared to
alternative designs, such as six-degree-of-freedom (6-DOF)
platforms, the simplified 3-DOF configuration reduced cost and
complexity while still meeting the project’s goals. Looking at
Figure 2, the different possible configurations for a Stewart
Platform can visualized. We each considered these designs when
designing our application.

Figure 2: Common Stewart Platform Configurations

The plant incorporates three linear actuators, each powered
by Nema 17 stepper motors with integrated encoders for closed-
loop control. Bearings were added at moving joints to reduce
friction and wear, ensuring smooth operation and prolonged
durability. The frame and actuators were constructed using
aluminum for its strength-to-weight ratio, while 3D-printed
components were used for custom fittings to maintain cost
efficiency and manufacturability.

Figure 3: CAD Model of our system

The chosen actuation method relies on revolute, prismatic,
and spherical (RPS) joints, which allow precise control of the
platform's orientation. The actuators translate control signals
into platform tilt adjustments, enabling accurate compensation
for ball movement. Alternative configurations, such as 6-DOF

platforms or systems with pneumatic actuators, were considered
but excluded due to their higher cost and increased system
complexity. As shown above in Figure 3, the actuators and entire
system CAD model can be seen, showing the actuators and their
design.

This design strikes a balance between functionality,
affordability, and manufacturability, making it a practical choice
for both research and educational purposes.

II. SYSTEM DESIGN

The design of the Stewart platform emphasizes the
integration of mechanical precision, effective actuation, and
vision-based feedback to achieve dynamic ball balancing with
three degrees of freedom (3-DOF). This section focuses on the
platform’s mechanical configuration, actuation systems, and
vision integration.

The mechanical structure of the platform is constructed
primarily from aluminum, chosen for its combination of
strength, durability, and lightweight properties. The circular
platform has a diameter of 1.5 feet, providing a controlled area
for ball movement. The base plate, also made of aluminum,
serves as a rigid foundation, ensuring stability and reducing
vibrations during operation. Bearings are incorporated at all
moving joints to minimize friction and mechanical wear,
enhancing long-term performance and reliability.

Actuation is achieved through three linear actuators, each
driven by NEMA 17 stepper motors equipped with a 5.18:1
planetary gearbox for enhanced precision and torque. These
actuators are connected to the platform and the base plate using
revolute, prismatic, and spherical (RPS) joints. The revolute
joint enables angular control at the motor, the prismatic joint
facilitates linear motion, and the spherical joint allows multi-
directional tilting. This arrangement ensures that the platform
can achieve precise tilt and height adjustments, as required for
maintaining the ball’s stability.

The Pixy2 camera is employed as the primary feedback
sensor, offering real-time tracking of the ball’s position in three
dimensions. Mounted directly above the platform, the camera
provides an unobstructed view, capturing positional data at 60
frames per second. Onboard processing within the camera
extracts the ball’s coordinates, which are then transmitted to an
Arduino Uno R4 microcontroller for use in the control
algorithm. This approach reduces computational demands on the
microcontroller and simplifies the system architecture compared
to alternative sensor configurations. The final design and linear
actuators can be seen below in Figure 4, showing the tall camera

3

stand which served as the main source of feedback for our
system as well as the stepper motors and drivers.

Figure 4: Final Design

The actuation process is driven by the results of inverse
kinematics calculations, which determine the necessary
adjustments in actuator lengths to achieve the desired platform
tilt and height. Stepper motor movements execute these
adjustments, translating control signals into precise physical
changes in platform orientation. The closed-loop feedback
system continuously monitors the ball’s position and updates the
actuator commands, allowing for rapid compensation of
disturbances.

Power is supplied by a 24V system that provides consistent
energy to the stepper motors, ensuring smooth and reliable
operation. The Arduino Uno R4 coordinates all components,
integrating vision feedback with actuation control to maintain
dynamic stability. The platform’s compact and robust design,
combined with efficient vision-based feedback, enables precise
motion control while maintaining simplicity and
manufacturability.

III. MATHEMATICAL MODELING

A. Inverse Kinematics

 In order to accurately model the dynamic behavior of a
mobile platform, it is crucial to establish the relationship
between the platform's position and orientation, the joint
variables, and its geometric parameters. For platforms like the
Stewart platform, two primary approaches are used: inverse
kinematics and direct kinematics.

Direct kinematics involves solving a set of nonlinear
equations to determine the position and orientation of the
manipulator when the lengths of the actuators are known.
However, this method can lead to multiple solutions. For
example, a servo-controlled Stewart platform generates a system
of 18 equations with up to 40 possible solutions [1]. In contrast,
inverse kinematics provides a more practical and efficient
approach. It simplifies the process by calculating the actuator
lengths and motor parameters directly from the desired position
or tilt angles of the upper platform. This avoids the complexity
of determining the platform's position and orientation based on
actuator conditions and operating parameters.

Figure 5: Physical Structure of platform with linear
actuators

 Given these advantages, inverse kinematics is particularly
well-suited for deriving the dynamic model of the platform. By
focusing on the variations in distances between the upper
platform and the fixed lower platform, as well as the motor
parameters, the desired position of the platform can be
effectively achieved. This approach ensures precise and stable
control in dynamic applications.

Figure 6: Platform Rotation 𝑖𝑡ℎ linear actuator

In Figure 6, relative to the center of the platform, the 𝑖𝑡ℎ
vector 𝑝𝑖 denotes the location of the spherical joint in the
platform and the vector 𝑏𝑖 denotes the location of the rotational

joint at the motor or base. The vector 𝑇⃗ is the vertical
translational reference distance between the base and the
platform. The vector 𝑙𝑖 denotes the length of the 𝑖𝑡ℎ actuator,
required to tilt the platform based on the roll or pitch angle of

the platform. The vector 𝑄𝑖⃗⃗ ⃗ defines the coordinates of the anchor
point 𝑝𝑖 relative to the base plate given by,

𝑄𝑖 = 𝑇𝑖⃗⃗ + 𝑅𝑏
𝑝
∙ 𝑃𝑖⃗⃗ (1)

where, 𝑃𝑖⃗⃗ is the location of the of the spherical end-effector from
the origin of the platform in the reference frame of the platform.

𝐵𝑖⃗⃗ ⃗ is the location of the rotational joint expressed in the reference
frame of the base plate.

4

Figure 7: Platform and Base location of end-effectors

 The rotational matrix 𝑅𝑏
𝑝

, is the rotation matrix, of the

platform frame with respect to the base, given by the
combination of each rotation 𝑅𝑥 (roll angle 𝛼), 𝑅𝑦 (pitch angle

𝛽), and 𝑅𝑧 (yaw angle 𝜓),

𝑅𝑥 = [
1 0 0
0 cos 𝛼 − sin 𝛼
0 sin 𝛼 cos 𝛼

] (2)

𝑅𝑦 = [
cos𝛽 0 sin 𝛽
0 1 0

− sin 𝛽 0 cos 𝛽
] (3)

𝑅𝑧 = [
cos𝜓 − sin𝜓 0
sin𝜓 cos𝜓 0
0 0 1

] = [
1 0 0
0 1 0
0 0 1

] (4)

 Note that the rotation matrix about the yaw angle is
evaluated as the identity matrix since there is no rotation about
the z-axis due to design of the system, therefore 𝜓 = 0. Thus,
the rotational matrix is given by,

𝑅𝑏
𝑝
= 𝑅𝑧 ∙ 𝑅𝑦 ∙ 𝑅𝑥

𝑅𝑏
𝑝
= [

cos𝛽 sin 𝛼 ∙ sin 𝛽 sin 𝛽 ∙ cos 𝛼
0 cos𝛼 − sin 𝛼

− sin 𝛽 cos 𝛽 ∙ sin 𝛼 cos 𝛼 ∙ cos 𝛽
] (5)

Finally, the length of the 𝑖𝑡ℎ parallel actuator is found to be,

𝑙𝑖⃗⃗ = 𝑇𝑖⃗⃗ + 𝑅𝑏
𝑝
∙ 𝑃𝑖⃗⃗ − 𝐵𝑖⃗⃗ ⃗ (6)

However, the length of the parallel manipulator is achieved
by the rotational angle of the stepper motors as denoted in figure
8,

Figure 8: Linear RPS joint

By applying, the law of cosines and the fixed lengths of the
parallel manipulator, results in the following equation that
relates the angle of the motor 𝜃𝑖 and length of the parallel
manipulator 𝑙𝑖.

𝑓𝑖
2 = 𝑠𝑖

2 + 𝑙𝑖
2 − 2𝑠𝑖𝑙𝑖 cos 𝜃𝑖 (7)

Finally, the angle 𝜃𝑖 of the 𝑖𝑡ℎ motor based on the platforms
rotation can be determined by,

𝜃𝑖 = cos
−1 (

𝑙𝑖
2+𝑠𝑖

2−𝑓𝑖
2

2𝑠𝑖𝑙𝑖
) (8)

B. Dynamic Modeling

The Stewart platform plant model serves as the foundation

for analyzing the dynamics of a ball-and-plate control system.

This system is a common benchmark in control theory and

robotics due to its complexity and multi-variable nature. It

involves balancing a ball on a rigid plate by adjusting the plate's

tilt angles through actuators. The dynamic model provides a

mathematical framework for designing controllers, simulating

system behavior, and predicting performance under various

conditions. The following section outlines the assumptions,

energy analysis, and derivation of the plant model, culminating

in its transfer functions.

Figure 9: Ball in plane with pitch and roll rotation

1) Assumptions:

The ball and plate system analyzed under the Stewart

platform model operates under the following assumptions:

1. The ball rolls on the platform without slipping.

2. The ball is a solid, symmetric, and homogeneous

sphere.

3. Friction between the ball and the plate is negligible.

4. The ball maintains continuous contact with the plate.

5. The plate is rigid and homogeneous.

2) Energy Analysis

The Lagrangian formulation simplifies the analysis of our

system by expressing dynamics in terms of kinetic and potential

energy. For the ball-and-plate system, this approach captures

the interaction between the ball’s motion and the plate’s tilt

using generalized coordinates. The resulting equations of

5

motion form the foundation for control design and stability

analysis.

The dynamic behavior of the system is characterized using

the Lagrange equation, expressed as:

𝐿(𝑡) = ∑𝑇(𝑡) − ∑𝑉(𝑡) (9)

Where 𝐿(𝑡) is the difference between the kinetic energy 𝑇

and the potential energy 𝑉 of the system.

Figure 10: Ball rolling without slipping (pitch ∠𝛼)

a) Kinetic Energy

Figure 11: FBD Ball rolling w/out slipping axis rotation

The total kinetic energy consists of contributions from the

ball and the plate:

𝑇 = 𝑇𝑏𝑎𝑙𝑙 + 𝑇𝑝𝑙𝑎𝑡𝑒 (10)

Where, the ball's kinetic energy accounts for translational

and rotational motions:

𝑇𝑏𝑎𝑙𝑙 =
1

2
𝑚𝑣𝑏

2 +
1

2
𝐼𝑏𝜔𝑏

2 (11)

We can define the position vector of the ball from the origin

of the plate, as 𝑠 = [𝑥′ 𝑦′ 0]𝑇, and the linear velocity vector

of the ball from the origin as 𝑣𝑏 =
𝑑𝑠

𝑑𝑡
= [𝑥′̇ 𝑦′̇ 𝑜]𝑇. The ball

translational kinetic energy can be modeled as,

𝑇𝑏𝑡𝑟𝑎𝑛𝑠 =
1

2
𝑚(𝑥′̇

2
+ 𝑦′̇

2
) (12)

The angular velocity of the ball can be simplified by the fact

that the linear velocity is proportional to the angular velocity

and the distance from the rotation axis, given by 𝑣𝑏⃗⃗⃗⃗ = 𝜔𝑏⃗⃗⃗⃗ ⃗ × 𝑟𝑏⃗⃗ ⃗,
where 𝑟𝑏⃗⃗ ⃗ = [0 0 𝑟𝑏]

𝑇 is the radius of the ball described in

the 3D reference frame. The ball rotational kinetic energy can

be modeled as,

 𝑇𝑏𝑟𝑜𝑡 =
1

2
𝐼𝑏 (

𝑥′̇
2

𝑟𝑏
2 +

𝑦′̇
2

𝑟𝑏
2) (13)

The total kinetic energy of the ball can be modeled by the

following,

∴ 𝑇𝑏𝑎𝑙𝑙 =
1

2
𝑚(𝑥′̇

2
+ 𝑦′̇

2
) +

1

2
𝐼𝑏 (

𝑥′̇
2

𝑟𝑏
2 +

𝑦′̇
2

𝑟𝑏
2) (14)

The plate's kinetic energy includes translational and

rotational motions.

𝑇𝑝𝑙𝑎𝑡𝑒 =
1

2
𝑚𝑣𝑝

2 +
1

2
𝐼𝑠𝑦𝑠(𝜔𝑝𝑙𝑎𝑡𝑒)

2
 (15)

The angular velocity of the plate can be modeled by

observation, which is simply the combination of pitch and roll,

𝜔𝑝 =
∆𝜃

∆𝑡
 in the 3-dimensional coordinate system results in

𝜔𝑝⃗⃗⃗⃗ ⃗ = [𝛼̇ 𝛽̇]𝑇 . Furthermore, the moment of inertia for the

system can be represented as the sum of moments between the

ball and plate given by 𝐼𝑠𝑦𝑠 = 𝐼𝑏𝑎𝑙𝑙 + 𝐼𝑝𝑙𝑎𝑡𝑒 , thus the plate’s

rotational kinematic motion after linearization can be

represented by,

𝑇𝑝(𝑟𝑜𝑡) =
1

2
(𝐼𝑝 + 𝐼𝑏)(𝛼̇

2 + 𝛽̇2) (16)

The linear velocity of the plate is dependent on the reference

location on the plate from the center of the plate 𝑟 = [𝑥 𝑦]

and is given by 𝑣𝑝 = 𝑟 ∙ 𝜔⃗⃗ 𝑝
𝑇
= 𝑥𝛼̇ + 𝑦𝛽̇ . The plate

translational kinetic energy can be modeled as.

𝑇𝑝(𝑡𝑟𝑎𝑛𝑠) =
1

2
𝑚(𝑥𝛼̇ + 𝑦𝛽̇)

2
 (17)

The total kinetic energy of the plate can be modeled by the

following,

∴ 𝑇𝑝𝑙𝑎𝑡𝑒 =
1

2
𝑚(𝑥𝛼̇ + 𝑦𝛽̇)

2
+

1

2
(𝐼𝑝 + 𝐼𝑏)(𝛼̇

2 + 𝛽̇2) (18)

b) Potential Energy

The total potential energy consists of contributions from the

ball and the plate:

𝑉 = 𝑉𝑏𝑎𝑙𝑙 + 𝑉𝑝𝑙𝑎𝑡𝑒 (19)

However, since the plate is static and always in contact with

the ball, it has no potential energy contribution to the system

𝑉𝑝𝑙𝑎𝑡𝑒 = 0 . The only potential energy contribution to the

system is gravitational effect on the ball given by 𝑉𝑝𝑙𝑎𝑡𝑒 =

 −𝑚𝑔ℎ, where ℎ, is the modeled about the combination of pitch

and roll angles of the plate ℎ = 𝑥 sin 𝛼 + 𝑦 sin 𝛽.

∴ 𝑉𝑏𝑎𝑙𝑙 = −𝑚𝑔(𝑥 sin 𝛼 + 𝑦 sin 𝛽) (20)

3) Langrian Dynamics

The Euler-Lagrange equation denotes the relationship

between the Lagrangian of a system and the system's equations

of motion. The equation provides a systematic way to derive the

equations of motion for a system using the principle of least

action. The Lagrangian for the ball and plate system is,

𝐿 =
1

2
𝑚(𝑥′̇

2
+ 𝑦′̇

2
) +

1

2
𝐼𝑏 (

𝑥′̇
2

𝑟𝑏
2 +

𝑦′̇
2

𝑟𝑏
2) +

1

2
𝑚(𝑥𝛼̇ + 𝑦𝛽̇)

2
+

1

2
(𝐼𝑝 + 𝐼𝑏)(𝛼̇

2 + 𝛽̇2) + 𝑚𝑔(𝑥 sin 𝛼 + 𝑦 sin 𝛽 (21)

6

For a system described by a Lagrangian, 𝐿(𝑞, 𝑞̇, 𝑡) , the

Euler-Lagrange equation is,

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑞̇
) −

𝜕𝐿

𝜕𝑞
= 𝑄 (22)

where 𝑞 represents the generalized coordinates, 𝑞̇ represents

the time derivatives of these coordinates (generalized

velocities) and 𝑡 is time. 𝑄 represents the generalized non-

conservative forces of the system, in our system they are the

torques generated by the rotational movement of the plate about

the origin represented.

𝑞 = [

𝑥
𝑦
𝛼
𝛽

] , 𝑞̇ = [

𝑥̇
𝑦̇
𝛼̇
𝛽̇

] , 𝑄 = [

0
0
𝜏𝑥
𝜏𝑦

] (23)

After evaluating the Euler-Lagrange with the derived

Lagrangian, and taking the partial derivatives respectively, it

yields the following second order system of equations,

{

 (𝑚 +

𝐼𝑏

𝑟𝑏
2) 𝑥

′̈ − 𝑚(𝑥𝛼̇2 + 𝑦𝛼̇𝛽̇ + 𝑔 sin 𝛼) = 0 (24)

(𝑚 +
𝐼𝑏

𝑟𝑏
2) 𝑥

′̈ − 𝑚(𝑥𝛼̇2 + 𝑦𝛼̇𝛽̇ + 𝑔 sin 𝛼) = 0 (25)

𝑑𝑠𝑑𝑓𝑑(26)
𝑑𝑑(27)

However, equations (26 & 27), are related to the non-

conservative forces of the system, their solutions are coupled

with the torques of the plate and are not useful for our

application.

Furthermore, the equations can be simplified, by

employing the small angle theorem to approximate sin 𝛼 ≈ 𝛼,

since the angle tilt of the platform is very small (much less than

15 degrees), 𝛼̇2 = 0 , 𝛽̇2 = 0 , 𝛼̇2 = 0 and 𝛼̇𝛽̇ = 0 . This

results in simplified equations,

 𝑚𝑥̈′ +
𝐼𝑏

𝑟𝑏
2 𝑥̈ − 𝑚𝑔𝛼 = 0 (28)

 𝑚𝑦̈′ +
𝐼𝑏

𝑟𝑏
2 𝑦̈ − 𝑚𝑔𝛽 = 0 (29)

where, the moment of inertia is defined as, 𝐼𝑏 =
2

5
𝑚𝑟𝑏

2, it

is important to note that after substituting the moment of inertia

the resulting mathematical model is determined to be

independent of the mass of the ball, which in counter to the

natural assumption that a heavier ball falls faster, however, this

proves that the system is behaving under the assumption of

rolling without slipping.

Finally, the ball and plate Stewart platform can be modeled

by the following set of second order linear equations,

 𝑥̈′ =
5

7
𝑔𝛼 (30)

 𝑦̈′ =
5

7
𝑔𝛽 (31)

C. Controller Design

In order to design a controller for this system, a prerequisite

is to check the system’s stability and verify the criterion for

stability. Applying a Laplace transformation to the

mathematical model results in the following continuous time

domain system,

 𝐺𝑝𝑥(𝑠) =
Α(𝑠)

𝑋(𝑠)
=

5𝑔

7𝑠2
 (32)

 𝐺𝑝𝑦(𝑠) =
Β(𝑠)

𝑋(𝑠)
=

5𝑔

7𝑠2
 (33)

Figure 12: Block Diagram of PID System

 The block diagram shown in Figure 12 represents the

feedback control loop, where the desired position inputs 𝑋𝐷(𝑠)
and 𝑌𝐷(𝑠) are compared to the actual positions 𝑋(𝑠) and 𝑌(𝑠)
to compute the error signal 𝐸(𝑠) . This error is processed

through the PID controller 𝐺𝐶(𝑠), which generates the control

input 𝑢(𝑡) based on proportional, integral, and derivative

components of the error. Feedback from the Pixy2 camera

system 𝐻(𝑠) ensures real-time updates of the ball's position,

enabling continuous correction of platform tilt to maintain

dynamic stability. The diagram highlights the integration of the

vision system, control algorithms, and mechanical actuation,

forming a cohesive feedback loop critical for achieving precise

ball balancing.

Figure 13: Root Locus of Open Loop

The root locus in Figure 13 shows that the system is

marginally stable as indicated by the two poles located as zero,

this demonstrates that a controller could stabilize the system.

D. Control Law (PID controller)

The chosen controller for this application to stabilize the

system is a PID controller which operates on the principle of

minimizing the error between a desired setpoint and the actual

system output. The control law is defined as:

7

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝜏)𝑑𝜏
𝑡

0
+ 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
 (34)

Where, 𝑒(𝑡) is the error at time 𝑡, calculated as the difference

between the desired and actual position or orientation. 𝐾𝑝is the

proportional gain, which scales the error, 𝐾𝑖 is the integral gain,

which accumulates past errors. 𝐾𝑑, is the derivative gain, which

predicts future error trends.

In Figure 14, it demonstrates the step response in

continuous time domain of the tuned system with a PID

controller utilizing MATLAB’s autotune feature.

Figure 14: Step Response with tuned PID

The exact values of this tuned controller are not relevant for

our application, it only demonstrates the system’s response to

an applied PID controller and the effectiveness of applying a

control law to stabilize the system. In the real world, the

applications of a continuous time domain controller are not

practical and therefore a discrete time domain controller is

needed for practical applications.

E. Discrete time domain analysis ZOH (Z-Domain)

In modern control systems, the use of a discrete PID

controller is not only advantageous but often necessary.

Discrete controllers are essential because most real-world

systems rely on digital hardware, such as microcontrollers or

microprocessors, which operate in discrete time. These

controllers are inherently designed to process data and compute

outputs at specific intervals, aligning seamlessly with the

periodic nature of sensor feedback and actuation in the system.

For example, the Stewart platform's vision-based feedback

system provides positional data at discrete intervals, making a

discrete PID controller an ideal choice for directly handling this

sampled data.

To design a PID controller for the Stewart platform, a zero-

order hold (ZOH) method was used to discretize the system for

practical application. It works by holding each discrete control

value constant over the sampling interval, creating a piecewise

constant signal that approximates the desired continuous

control input. The z-transform for the discretized plant from

continuous time domain 𝐺𝑝(𝑠) to discrete-time, becomes,

𝐺𝑝(𝑧) = (1 − 𝑧
−1)ℤ {

𝐺𝑝(𝑠)

𝑠
}

𝐺𝑝(𝑧) = (1 − 𝑧
−1)ℤ {

7

𝑠3
}

𝐺𝑝(𝑧) =
3.5𝑇2(𝑧+1)

𝑧2−2𝑧+1
 (35)

The resulting discretized plant can be applied to the control

of the ball on the platform along the coordinate axis and can

therefore be used to describe the motion of the ball along the

𝑥- and 𝑦- axes due to symmetry.

The PID control must also be discretized and for this method, a

ZOH with a forward Euler configuration was applied and

resulted in the following control law,

𝐶(𝑧) = 𝐾𝑝 + 𝐾𝑖
𝑇

𝑧−1
+ 𝐾𝑑

𝑧−1

𝑇
 (36)

This technique is essential for interfacing digital

controllers with continuous physical systems, ensuring

compatibility and enabling accurate system response. While

simple and effective, ZOH introduces a piecewise nature to the

signal, which may lead to minor lag or high-frequency effects

in fast-changing systems.

IV. IMLEMENTATION AND TESTING

The resulting Discrete-Time functions provided us with a

start for the tuning process. For this application, a sample time

of 0.2 seconds was used. The limiting factor for our feedback

control system being the Pixy2 camera which operates at a

frequency of 60fps which leads to the sample time of 0.2

seconds as our limiting factor. after discretization of our closed

loop feedback system, it results in the following discrete-time

closed-loop transfer function with a tuned PID,

𝐻(𝑧) =
0.07708𝑧3−0.05606𝑧2−0.07694𝑧+0.0562

1.077𝑧3−3.056𝑧2+2.923𝑧−0.9438
 (37)

Figure 15 shows the step response of two discretized tuned

responses that were within our desired specifications. The

compared step responses highlight distinct differences between

the fast and slow systems in their closed-loop step responses.

The fast system demonstrates a slower rise time of 1.4 seconds

compared to 1.0 second for the slow system, but it stabilizes

significantly quicker, with a settling time of 8.6 seconds versus

12.8 seconds. Additionally, the fast system exhibits lower

overshoot (22.57%) and a smaller peak amplitude (1.2257),

indicating more controlled and stable behavior. In contrast, the

slow system shows a more aggressive response with higher

overshoot (44.52%) and a peak amplitude of 1.4452, though it

reaches this peak earlier at 2.4 seconds compared to 4.0 seconds

for the fast system. However, the increased overshoot and wider

steady-state range of the slow system (0.8386 to 1.4452)

suggest reduced precision compared to the fast system, which

maintains a narrower steady-state range (0.9048 to 1.2257).

8

Figure 15: Discrete Time Closed Loop Step Response

Overall, the fast system is better suited for applications

requiring stability and precision, while the slow system

prioritizes rapid initial response at the expense of overshoot and

settling time.

A. Physical Performance of PID controller

After the system was tuned with a PID controller, the values

of the PID gains were programmed into Arduino Uno (See

Appendix A), the Stewart platform robot. The resulting

response matched our expectations of our designed discrete-

time system. Effectively validating our design of the PID

controller. The fast tuned system physically demonstrated a

settling time of about 8 seconds with some overshoot.

In the Stewart platform application, overshoot allows the

system to reach the desired position or target state faster. In

systems where rapid responses are essential for controlling the

ball's movement on the platform. The presence of overshoot

minimizes the time it takes for the ball to reach a new position.

Overshoot effectively deals with the dynamic and fast-changing

ball's position while maintaining stability and achieving the

control objective. For Example, when the platform is tilted to

counteract the ball's motion, a slight overshoot in the platform's

tilt can ensure the ball's movement is reversed promptly,

minimizing errors before the system settles. However, the

overshoot must be carefully balanced to avoid instability or

excessive oscillations.

V. CONCLUSION

This study successfully developed and implemented a

3RPS-Stewart platform, a compact parallel manipulator, to

dynamically stabilize a ball using precision actuation and a

PID-based closed-loop control system. By leveraging low-cost

components such as the Arduino Uno R4 microcontroller and

Pixy2 camera for real-time vision tracking at 60 frames per

second, the platform achieved a settling time of 8.6 seconds

with controlled overshoot of 22.57%. These metrics were

realized through meticulous integration of mechanical,

electronic, and software systems.

Inverse kinematics computations translated control inputs

into precise platform tilts, enabling seamless dynamic

adjustments. The design optimizes manufacturability and

functionality by combining lightweight aluminum components

with custom 3D-printed fittings. Mathematical modeling using

the Euler-Lagrange method provided a rigorous foundation for

control design, while discretization through a zero-order hold

(sampling time of 0.2 seconds) ensured compatibility with

digital control systems.

The experimental outcomes validated the effectiveness of the

proposed control strategy. The system demonstrated rapid

stabilization with a rise time of 1.4 seconds, minimal steady-

state error, and reliable performance under dynamic conditions.

These achievements highlight the feasibility of creating high-

performance robotic platforms with accessible and cost-

effective technology.

This work paves the way for further exploration in fields like

robotics, automation, and precision handling. Future

enhancements could include the adoption of faster

microcontrollers for improved response times, as well as

expanded capabilities to address more complex dynamic

systems. The results underscore the potential of scalable and

robust mechatronic designs for research, industrial, and

educational applications.

ACKNOWLEDGMENTS

We extend our heartfelt gratitude to Professor Dr. Benham
Bahr for his exceptional guidance and support as our advisor
throughout this project. His invaluable expertise and
constructive feedback greatly contributed to the successful
design and implementation of the 3RPS-Stewart platform. Dr.
Bahr's encouragement and dedication were pivotal in helping us
overcome challenges and achieve our objectives. We deeply
appreciate his mentorship, which has been a source of
inspiration and learning throughout this journey.

REFERENCES

[1] Unknown. The mathematics of the stewart platform. Wokingham U3A

MathGroup.[Online].Available:https://web.archive.org/web/2013050613
4518/http://www.wokinghamu3a.org.uk/Maths%20of%20the%20Stewar
t%20Platform%20v5.pdf

[2] Pixy2, "Color connected components – Pixy2 documentation," [Online].
Available:
https://docs.pixycam.com/wiki/doku.php?id=wiki:v2:color_connected_c
omponents.

[3] A. Koszewnik, K. Troc, and M. Stowik, “PID Controllers Design Applied
to Positioning of Ball on the Stewart Platform,” Acta Mechanica et
Automatica, vol. 8, no. 4, pp. 214–218, 2015. [Online]. Available:
http://www.acta.mechanica.pb.edu.pl/volume/vol8no4/39_2014_016_K
OSZEWNIK_TROC_SLOWIK.pdf

[4] (2002) Creating a stewart platform model using simmechanics.

[5] Technical Articles and Newsletters. MathWorks. [Online]. Available:
http://www.mathworks.com/company/newsletters/articles/creating-a-
stewart-platform-model-using-simmechanics.html?requested

[6] S. Kucuk, Serial and Parallel Robot Manipulators - Kinematics,
Dynamics, Control and Optimization. InTech, 2012, ch. 10, pp. 179–202.
[Online]. Available:http://cdn.intechopen.com/pdfs-wm/34400.pdf

[7] A. S. Jackson, "Design and control of a Stewart platform for dynamic
stabilization," M.S. thesis, Mechanical Engineering Dept., California
Polytechnic State Univ., San Luis Obispo, CA, USA, 2018. [Online].
Available: https://digitalcommons.calpoly.edu/theses/2124/.

https://docs.pixycam.com/wiki/doku.php?id=wiki:v2:color_connected_components
https://docs.pixycam.com/wiki/doku.php?id=wiki:v2:color_connected_components
http://www.acta.mechanica.pb.edu.pl/volume/vol8no4/39_2014_016_KOSZEWNIK_TROC_SLOWIK.pdf
http://www.acta.mechanica.pb.edu.pl/volume/vol8no4/39_2014_016_KOSZEWNIK_TROC_SLOWIK.pdf
http://www.mathworks.com/company/newsletters/articles/creating-a-stewart-platform-model-using-simmechanics.html?requested
http://www.mathworks.com/company/newsletters/articles/creating-a-stewart-platform-model-using-simmechanics.html?requested
https://digitalcommons.calpoly.edu/theses/2124/

9

APPENDIX 1

10

MAIN.ino
/***

 3RPS Stewart Platform Ball Bounce & Balance

 --

 @description: this program operates a 3DOF RPS Stewart Platform to balance a ball on a platform

 using computer vision for position detection & PID controller to control the balls position.

 @authors: Jose Ramirez & Ethan Lendo

 @institution: Cal Poly Pomona, Dept. of Mech. Engineering

 @date: 07-22-2024

 @version: 1.0

 **/

 /* TO-DO

 -> tune the PID

 -> Develop bounce

 -> Develop ball patterns

*/

#include <Arduino.h>

#include <Wire.h>

#include <Pixy2.h>

#include <AccelStepper.h>

#include <MultiStepper.h>

#include "InverseKinematics.h"

#define DEBUG 0 // for debugging 1 is on, else off 0

#if DEBUG == 1

#define debug(db) Serial.print(db)

#define debugln(db) Serial.println(db)

#else

#define debug(db)

#define debugln(db)

#endif

// Camera Object

Pixy2 pixy;

// Pixy2 camera offsets (camera's center in pixels)

constexpr double xOffset = 158.0; // Updated x offset of the platform's center in pixels

constexpr double yOffset = 104.0; // Updated y offset of the platform's center in pixels

constexpr double zOffset = 0.0;

// Platform and camera parameters

constexpr double circumscribedRadius = 240.0; // 240 Radius of the circumscribed circle for the hexagon in mm

constexpr double distanceToPlatform = 460.0; // Distance from camera to the platform in mm

double ball[2]; // X and Y coordinates of the ball

constexpr int x = 0, y = 1; // Define x, y array indexes

bool detected = false; // flag to verify ball is detected

// Stepper Motors Object

AccelStepper stepperA(AccelStepper::DRIVER, 9, 8); //(driver type, STEP, DIR) Driver A

AccelStepper stepperB(AccelStepper::DRIVER, 5, 4); //(driver type, STEP, DIR) Driver B

AccelStepper stepperC(AccelStepper::DRIVER, 3, 2); //(driver type, STEP, DIR) Driver C

// Create instance of MultiStepper

MultiStepper steppers;

// Stepper Motor Variables

double speed[3] = {0, 0, 0}; // Motor speed array

double speedPrev[3] = {0, 0, 0}; // Previous motor speed array

int pos[3] = {0, 0, 0}; // Array to hold angle position of each servo

constexpr double angleOrigin = -2.24; // Origin angle at the start

constexpr double ks = 500.0; // Speed multiplier constant

constexpr double angleToStep = 3200.0 / 360.0; // Convert angle to step count (microsteps * gearRatio / 360 degrees)

constexpr double gearRatio = 5.18;

// PID Constants (2s settling time)

double kp = 0.072, ki = 0.0025, kd = 0.07;

//double kp = 0.075, ki = 0.0025, kd = 0.07; //pretty good

//double kp = 0.068, ki = 0.0025, kd = 0.078; // almost perfect

//double kp = 0.068, ki = 0.002, kd = 0.25

//double kp = 0.03263, ki = 0.001886, kd = 0.1411;

//double kp = 0.01658, ki = 0.0008346, kd = 0.0823;

//double kp = 0.04302, ki = 0.002855, kd = 0.1621;

//double kp = 0.07756, ki = 0.004005, kd = 0.3755;

double error[2] = {0, 0}, errorPrev[2] = {0, 0}, integr[2] = {0, 0}, deriv[2] = {0, 0}, out[2] = {0, 0}, outf[2] = {0, 0};

// PID terms for X and Y directions

11

// Add a sample time for PID calculations

constexpr unsigned long sampleTime = 20; // Sample time in milliseconds

// Variables for PID timing

unsigned long lastPIDTime = 0;

// Variables to capture initial times

/* Plant(b, p, f, g)

 b = distance from the center of the base to any of its corners

 P = distance from the center of the platform to any of its corners

 f = length of link #1

 s = length of link #2

*/

Plant plant(125.0, 125.0, 100.0, 60.0);

// Function Declarations

void moveTo(double hz, double nx, double ny);

void findBall();

void PID(double setPointX, double setPointY);

void convertToMillimeters(double &pixelX, double &pixelY);

///

///

/// @brief Arduino setup() Function.

///

/// This function initializes serial communication with PIXY2 and the initial servo

/// parameters needed to initialize the platform.

///

//

void setup() {

 // Initialize Serial communication

 Serial.begin(115200);

 // Initialize Pixy2

 pixy.init();

 // Optionally turn on Pixy2's LED

 // pixy.setLamp(1, 1);

 // Set max speed and acceleration for steppers

 stepperA.setMaxSpeed(6000);

 stepperA.setAcceleration(3000);

 stepperB.setMaxSpeed(6000);

 stepperB.setAcceleration(3000);

 stepperC.setMaxSpeed(6000);

 stepperC.setAcceleration(3000);

 // SteppersControl instance for multi stepper control

 steppers.addStepper(stepperA);

 steppers.addStepper(stepperB);

 steppers.addStepper(stepperC);

 moveTo(37.75, 0, 0); // Moves the platform to the home position located at hz=37.75mm

 delay(100);

}

///

///

/// @brief Main Arduino Loop() Function.

///

/// This loop executes the PID control of the Platform.

///

//

void loop() {

 PID(0, 0); // (X setpoint, Y setpoint)

}

/// @fn Find the location of the ball using the pixy2 cam

void findBall() {

 // Request blocks (objects) from Pixy2

 int numBlocks = pixy.ccc.getBlocks();

 debugln((String)"Number of Balls Detected: " + numBlocks);

 if (numBlocks == 1) {

 detected = true;

 // Set current X and Y coordinates for object 0 (assuming this is the ball)

 ball[x] = pixy.ccc.blocks[0].m_y; // Absolute Y location of the ball, now treated as X

 ball[y] = pixy.ccc.blocks[0].m_x; // Absolute X location of the ball, now treated as Y

12

 debugln((String)"Absolute (X, Y) pixels: (" + ball[x] + ", " + ball[y] + ")");

 Serial.println((String)"Absolute (X, Y) pixels: (" + ball[x] + ", " + ball[y] + ")");

 // Calculate relative coordinates based on the center of the camera's field of view

 ball[x] -= yOffset;

 ball[y] -= xOffset;

 debugln((String)"Relative (X, Y) pixels: (" + ball[x] + ", " + ball[y] + ")");

 // Convert relative coordinates (pixels) to real-world coordinates (mm)

 convertToMillimeters(ball[x], ball[y]);

 debugln((String)"Real-world (X, Y) mm: (" + ball[x] + ", " + ball[y] + ")");

 } else {

 detected = false;

 if (numBlocks > 1) {

 debugln("MULTIPLE BALLS DETECTED!");

 } else {

 debugln("NO BALL DETECTED");

 }

 }

}

/// @fn PID control to calculate platform movement based on setpoints

// Variables for time management

unsigned long previousTimePID = 0;

double elapsedTimePID;

// Updated PID Function

void PID(double setPointX, double setPointY) {

 findBall(); // Find the location of the ball

 if (detected) {

 // Calculate elapsed time since last PID calculation

 unsigned long currentTimePID = millis();

 elapsedTimePID = (currentTimePID - previousTimePID) / 1000.0; // Convert ms to seconds

 previousTimePID = currentTimePID;

 for (int i = 0; i < 2; i++) {

 // Determine which axis we're calculating for (0 = X, 1 = Y)

 double setPoint = (i == 0) ? setPointX : setPointY;

 double currentPos = (i == 0) ? ball[x] : ball[y];

 // Calculate the error

 error[i] = currentPos - setPoint;

 // Proportional term

 double Pout = kp * error[i];

 // Integral term with windup guard

 integr[i] += error[i] * elapsedTimePID;

 // Limit for the integral to avoid windup

 integr[i] = constrain(integr[i], -1000, 1000);

 double Iout = ki * integr[i];

 // Derivative term (rate of change of error)

 deriv[i] = (error[i] - errorPrev[i]) / elapsedTimePID;

 deriv[i] = isnan(deriv[i]) || isinf(deriv[i]) ? 0 : deriv[i]; // Check for validity

 double Dout = kd * deriv[i];

 // PID output for the axis

 out[i] = Pout + Iout + Dout;

 //outf[i] = constrain(out[i], -5, 5);

 Serial.println((String) "I = " + Iout);

 // Store the current error as previous error for next loop

 errorPrev[i] = error[i];

 }

 } else {

 // If ball not detected, retry finding

 findBall();

 }

 // Move the platform based on PID output

 moveTo(37.75, -out[0], -out[1]);

 delay(5);

 // Debugging output to monitor PID terms and output

 debugln((String) "X OUT = " + out[0] + " Y OUT = " + out[1]);

 Serial.print("X_Input:");

 Serial.print(ball[x]);

13

 Serial.print(",");

 Serial.print("X_Output:");

 Serial.println(out[0]);

 Serial.print("Y_Input:");

 Serial.print(ball[y]);

 Serial.print(",");

 Serial.print("Y_Output:");

 Serial.println(out[1]);

}

/// @fn moves the steppers to the desired position based on the given X & Y coordinates

/// @param hz height of the z translation from the platform.

/// @param nx X- coordinate position of the ball relative to origin

/// @param ny Y- coordinate position of the ball relative to origin

void moveTo(double hz, double nx, double ny) {

 // Check if ball is detected

 if (detected) {

 debugln("Ball Detected :) ");

 // Calculate Stepper position

 for (int i = 0; i < 3; i++) {

 pos[i] = round((angleOrigin - plant.theta(i, hz, nx, ny)) * angleToStep * gearRatio);

 // Calculate Stepper Motor Speeds

 speedPrev[i] = speed[i];

 speed[i] = abs(pos[i] - ((i == 0) ? stepperA.currentPosition() : (i == 1) ? stepperB.currentPosition() :

stepperC.currentPosition())) * ks;

 speed[i] = constrain(speed[i], speedPrev[i] - 500, speedPrev[i] + 500); // Limit speed change to smooth movement

 speed[i] = constrain(speed[i], 0, 5000);

 }

 debugln((String) "Angle A = " + pos[0] / (angleToStep * gearRatio) + " degrees");

 debugln((String) "Angle B = " + pos[1] / (angleToStep * gearRatio) + " degrees");

 debugln((String) "Angle C = " + pos[2] / (angleToStep * gearRatio) + " degrees");

 // Set Calculated speed and target position

 stepperA.setMaxSpeed(speed[A]);

 stepperA.setAcceleration(speed[A] * 0.70);

 stepperA.moveTo(pos[A]);

 stepperB.setMaxSpeed(speed[B]);

 stepperB.setAcceleration(speed[B] * 0.70);

 stepperB.moveTo(pos[B]);

 stepperC.setMaxSpeed(speed[C]);

 stepperC.setAcceleration(speed[C] * 0.70);

 stepperC.moveTo(pos[C]);

 // Run steppers to target position

 while (stepperA.distanceToGo() != 0 || stepperB.distanceToGo() != 0 || stepperC.distanceToGo() != 0) {

 stepperA.run();

 stepperB.run();

 stepperC.run();

 }

 } else {

 debugln("Ball NOT Detected :(");

 for (int i = 0; i < 3; i++) {

 pos[i] = round((angleOrigin - plant.theta(i, hz, 0, 0)) * angleToStep * gearRatio);

 }

 debugln((String) "Angle A = " + pos[0] / (angleToStep * gearRatio) + " degrees");

 debugln((String) "Angle B = " + pos[1] / (angleToStep * gearRatio) + " degrees");

 debugln((String) "Angle C = " + pos[2] / (angleToStep * gearRatio) + " degrees");

 // Set Stepper Max Speed and target position

 stepperA.setMaxSpeed(6000);

 stepperA.moveTo(pos[A]);

 stepperB.setMaxSpeed(6000);

 stepperB.moveTo(pos[B]);

 stepperC.setMaxSpeed(6000);

 stepperC.moveTo(pos[C]);

 // Run steppers to target position

 while (stepperA.distanceToGo() != 0 || stepperB.distanceToGo() != 0 || stepperC.distanceToGo() != 0) {

 stepperA.run();

 stepperB.run();

 stepperC.run();

 }

 }

14

}

/// @fn Convert pixel coordinates to real-world coordinates in millimeters

void convertToMillimeters(double &pixelX, double &pixelY) {

 // Convert the pixel positions to positions within the hexagonal platform's circumscribed circle

 // Assuming linear transformation, map the pixel range to the circumscribed radius

 pixelX = (pixelX / 208.0) * 2 * circumscribedRadius; // Scaling X based on pixel range and radius

 pixelY = (pixelY / 316.0) * 2 * circumscribedRadius; // Scaling Y based on pixel range and radius

 // Ensure ball position stays within the platform's circular bounds

 double distanceFromCenter = sqrt(pixelX * pixelX + pixelY * pixelY);

 if (distanceFromCenter > circumscribedRadius) {

 // Ball is outside the platform bounds

 debugln("Warning: Ball is outside the platform!");

 }

}

InverseKinematics.cpp
#include "InverseKinematics.h"

// Define constants for calculations

double SQRT_3_OVER_2 = sqrt(3.0) / 2.0;

constexpr double HEIGHT_OFFSET = 77.69; // Offset for height calculation

constexpr double GRAVITY = 9.81;

constexpr double COEFF = 7.0 / (5.0 * GRAVITY);

// Constructor initializes constants and end effector/base positions

Plant::Plant(double _b, double _p, double _f, double _s) : b(_b), p(_p), f(_f), s(_s) {

 // Initialize end effector positions

 endEffector[A][0] = p;

 endEffector[A][1] = 0;

 endEffector[B][0] = -0.5 * p;

 endEffector[B][1] = SQRT_3_OVER_2 * p;

 endEffector[C][0] = -0.5 * p;

 endEffector[C][1] = -SQRT_3_OVER_2 * p;

 // Initialize base positions

 basePrisJoint[A][0] = p;

 basePrisJoint[A][1] = 0;

 basePrisJoint[B][0] = -0.5 * p;

 basePrisJoint[B][1] = SQRT_3_OVER_2 * p;

 basePrisJoint[C][0] = -0.5 * p;

 basePrisJoint[C][1] = -SQRT_3_OVER_2 * p;

}

double Plant::theta(int leg, double H, double xe, double ye) {

 // Calculate height and tilt angles

 double Hz = H + HEIGHT_OFFSET;

 double alpha = ye * COEFF * DEG_TO_RAD;

 double beta = xe * COEFF * DEG_TO_RAD;

 // Precompute trigonometric values

 double cos_alpha = cos(alpha);

 double sin_alpha = sin(alpha);

 double cos_beta = cos(beta);

 double sin_beta = sin(beta);

 double nx, ny, nz, length;

 // Calculate length based on the leg

 switch (leg) {

 case A:

 nx = endEffector[A][0] * cos_beta - basePrisJoint[A][0];

 nz = Hz - endEffector[A][0] * sin_beta;

 length = sqrt(nx * nx + nz * nz);

 break;

 case B:

 nx = endEffector[B][0] * cos_beta + endEffector[B][1] * sin_beta * sin_alpha -

basePrisJoint[B][0];

 ny = endEffector[B][1] * cos_alpha - basePrisJoint[B][1];

15

 nz = Hz - endEffector[B][0] * sin_beta + endEffector[B][1] * cos_beta * sin_alpha;

 length = sqrt(nx * nx + ny * ny + nz * nz);

 break;

 case C:

 nx = endEffector[C][0] * cos_beta + endEffector[C][1] * sin_beta * sin_alpha -

basePrisJoint[C][0];

 ny = endEffector[C][1] * cos_alpha - basePrisJoint[C][1];

 nz = Hz - endEffector[C][0] * sin_beta + endEffector[C][1] * cos_beta * sin_alpha;

 length = sqrt(nx * nx + ny * ny + nz * nz);

 break;

 default:

 return 0.0; // Invalid leg, return 0

 }

 // Calculate the angle and return it in degrees

 double angle = HALF_PI - acos((length * length + s * s - f * f) / (2 * s * length));

 return angle * RAD_TO_DEG;

}

InverseKinematics.h
#ifndef InverseKinematics_H

#define InverseKinematics_H

#include <Arduino.h>

#include <math.h>

// Define servo constants

#define A 0

#define B 1

#define C 2

class Plant {

 public:

 Plant(double b, double p, double f, double s);

 double theta(int leg, double h, double xe, double ye); // returns the angle value of each servo A, B, C

 private:

 double b; // distance from the center of the base to any of its corners

 double p; // distance from the center of the platform to any of its corners

 double f; // length of link #1

 double s; // length of link #2

 double endEffector[3][2];

 double basePrisJoint[3][2];

};

#endif

16

APPENDIX 2

TWO PLACE DECIMAL

A A

B B

2

2

1

1

DO NOT SCALE DRAWING

Base-Stepper

SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:4 WEIGHT:

REVDWG. NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

 BEND

MATERIAL

USED ON

THREE PLACE DECIMAL

APPLICATION

INTERPRET GEOMETRIC
PROPRIETARY AND CONFIDENTIAL TOLERANCING PER:

NEXT ASSY

DIMENSIONS ARE IN INCHES
TOLERANCES:
FRACTIONAL
ANGULAR: MACH

THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF
<INSERT COMPANY NAME HERE>. ANY
REPRODUCTION IN PART OR AS A WHOLE
WITHOUT THE WRITTEN PERMISSION OF
<INSERT COMPANY NAME HERE> IS
PROHIBITED.

 0.47

 0.79

 6
.8

2 0.16

 4x

 0.39

0.31 2x

 1.18

 0.28 1.18

 0.59

 2.17

 2.17

 1.18

 0
.5

9

 0.31

 0.39

 0
.9

4

 0.47

 7
.5

0

 1
.2

5

 0.19

 1.18
 4x

 2
.2

6

0.16

0.20

 1
.7

7 4x

 0.28

 2
.6

0

 0.
28

SOLIDWORKS Educational Product. For Instructional Use Only.

TWO PLACE DECIMAL

A A

B B

2

2

1

1

DO NOT SCALE DRAWING

Stepper_Spacer

SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:1 WEIGHT:

REVDWG. NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

 BEND

MATERIAL

USED ON

THREE PLACE DECIMAL

APPLICATION

INTERPRET GEOMETRIC
PROPRIETARY AND CONFIDENTIAL TOLERANCING PER:

NEXT ASSY

DIMENSIONS ARE IN INCHES
TOLERANCES:
FRACTIONAL
ANGULAR: MACH

THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF
<INSERT COMPANY NAME HERE>. ANY
REPRODUCTION IN PART OR AS A WHOLE
WITHOUT THE WRITTEN PERMISSION OF
<INSERT COMPANY NAME HERE> IS
PROHIBITED.

1.
43

 R0.83

0.12

 4x
 R0.16

 1.54

 0
.9

6

SOLIDWORKS Educational Product. For Instructional Use Only.

2

2

1
DO NOT SCALE DRAWING

Actuator Assem

SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:2 WEIGHT:

REVDWG. NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

B

FINISH

B

TWO PLACE DECIMAL

A
THREE PLACE DECIMAL

A

INTERPRET GEOMETRIC

PROHIBITED.

PROPRIETARY AND CONFIDENTIAL

 BEND

TOLERANCING PER:

APPLICATION

USED ONNEXT ASSY

MATERIAL

DIMENSIONS ARE IN INCHES
TOLERANCES:
FRACTIONAL
ANGULAR: MACH

THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF
<INSERT COMPANY NAME HERE>. ANY
REPRODUCTION IN PART OR AS A WHOLE
WITHOUT THE WRITTEN PERMISSION OF
<INSERT COMPANY NAME HERE> IS

1

 0.79

 R0.71

 0.17

0.61

 1.26

 3.50

 R
0.5

9

0.
31

0.
63

 0
.0

8

A

A 0.94 SECTION A-A

 0.39

 0.87

0.
31

 0

.0
8

0.
63

0.12

0.
63

 0.51

SOLIDWORKS Educational Product. For Instructional Use Only.

TWO PLACE DECIMAL

A A

B B

2

2

1

1

DO NOT SCALE DRAWING

Bearing_shaft
SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED:

SCALE: 2:1 WEIGHT:

REVDWG. NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

 BEND

MATERIAL

USED ON

THREE PLACE DECIMAL

APPLICATION

INTERPRET GEOMETRIC
PROPRIETARY AND CONFIDENTIAL TOLERANCING PER:

NEXT ASSY

DIMENSIONS ARE IN INCHES
TOLERANCES:
FRACTIONAL
ANGULAR: MACH

THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF
<INSERT COMPANY NAME HERE>. ANY
REPRODUCTION IN PART OR AS A WHOLE
WITHOUT THE WRITTEN PERMISSION OF
<INSERT COMPANY NAME HERE> IS
PROHIBITED.

0.
71

 4x 0.13

 0
.0

4

 0
.2

0

0.

71

0.

61

 0.04

 0.24

SOLIDWORKS Educational Product. For Instructional Use Only.

2

1
DO NOT SCALE DRAWING

Pixy2_case

SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:1 WEIGHT:

REVDWG. NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

2

 BEND

MATERIAL

BB

TWO PLACE DECIMAL

AA

PROHIBITED.

THREE PLACE DECIMAL

TOLERANCING PER:

APPLICATION

USED ONNEXT ASSY

PROPRIETARY AND CONFIDENTIAL
INTERPRET GEOMETRIC

DIMENSIONS ARE IN INCHES
TOLERANCES:
FRACTIONAL
ANGULAR: MACH

THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF
<INSERT COMPANY NAME HERE>. ANY
REPRODUCTION IN PART OR AS A WHOLE
WITHOUT THE WRITTEN PERMISSION OF
<INSERT COMPANY NAME HERE> IS

1

 0
.0

8

 0.39

 0.22 1.58

 0.35

0.12 0.11

 0.81

 0.08

 3x
 0

.4
3

 0.08

 0.78

 R
0.

28

 0
.2

3

0.12

 R0.28

 3x R0.12

 0.43

 0
.7

5

 0.41

 0
.3

9

 0
.4

1
 0.63

SOLIDWORKS Educational Product. For Instructional Use Only.

2
APPLICATION

TOLERANCING PER:

THREE PLACE DECIMAL

B

2

Base-Connector

UNLESS OTHERWISE SPECIFIED:

DO NOT SCALE DRAWING SHEET 1 OF 1

DWG. NO.

1
WEIGHT:

REV

SCALE: 1:3

A
SIZE

TITLE:

NAME DATE

COMMENTS:

INTERPRET GEOMETRIC Q.A.

MFG APPR.

DRAWN A
TWO PLACE DECIMAL

ENG APPR.

CHECKED

 BEND

PROPRIETARY AND CONFIDENTIAL

FINISH

B

PROHIBITED.

A

USED ONNEXT ASSY

MATERIAL

DIMENSIONS ARE IN INCHES
TOLERANCES:
FRACTIONAL
ANGULAR: MACH

THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF
<INSERT COMPANY NAME HERE>. ANY
REPRODUCTION IN PART OR AS A WHOLE
WITHOUT THE WRITTEN PERMISSION OF
<INSERT COMPANY NAME HERE> IS

1

 7.50

 60°

 0.68

 6.82

 0.31

 0
.7

9

0.20

 0.59 0.35

 5.31

 6.50

 0
.3

1

 0
.4

7

SOLIDWORKS Educational Product. For Instructional Use Only.

TWO PLACE DECIMAL

A A

B B

2

2

1

1

DO NOT SCALE DRAWING

Input_actuator

SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:1 WEIGHT:

REVDWG. NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

 BEND

MATERIAL

USED ON

THREE PLACE DECIMAL

APPLICATION

INTERPRET GEOMETRIC
PROPRIETARY AND CONFIDENTIAL TOLERANCING PER:

NEXT ASSY

DIMENSIONS ARE IN INCHES
TOLERANCES:
FRACTIONAL
ANGULAR: MACH

THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF
<INSERT COMPANY NAME HERE>. ANY
REPRODUCTION IN PART OR AS A WHOLE
WITHOUT THE WRITTEN PERMISSION OF
<INSERT COMPANY NAME HERE> IS
PROHIBITED.

 0.03

0.35

 3x

0.
94

0.16

 R0.08

 R0.06

 1
.0

4

 0.11

 R0.71

1.
26

 R0.59

 1
.3

3

 1
.1

0

 0
.0

8

 1
.1

0

 1
.3

3

 3
.6

6

 1
.0

9

 0.05

 0.39

 0
.3

9

 1.42

1.18

 1.42

 0
.3

9

SOLIDWORKS Educational Product. For Instructional Use Only.

