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Abstract— This paper presents the design and implementation of 

a Stewart platform, a 3-DOF parallel manipulator with three linear 

actuators, combining revolute, prismatic, and spherical joints. The 

project aims to dynamically stabilize a ball on the platform by 

precisely regulating its tilt angles using a combination of mechanical 

design, mathematical modeling, and digital control system 

implementation. 

The core of the control system is a proportional-integral-

derivative (PID) algorithm, optimized to maintain the ball's position 

at a designated setpoint on the platform. Real-time feedback is 

provided by a computer vision camera sensor, operating at 60 frames 

per second, which tracks the ball’s position and sends coordinates to 

an Arduino Uno R4 microcontroller. Corrective actions calculated 

by the controller achieved a settling time of 8.6 seconds, 

demonstrating efficient stabilization. 

The system's nonlinear dynamics were modeled using the Euler-

Lagrange method to derive stability criteria and inform the PID 

design. Continuous-time stability analysis revealed marginal 

stability, necessitating precise parameter tuning. A zero-order hold 

method with a 0.2-second sampling time enabled discretization for 

microcontroller implementation while maintaining performance. 

Inverse kinematics translated control commands into stepper 

motor actuator positions, allowing precise control of the platform’s 

orientation. Iterative prototyping addressed challenges like joint 

friction, resolution constraints, and motor limitations. The final 

design featured a 1.5-foot diameter platform constructed of 3D-

printed components, and an aluminum platform, demonstrating a 

balance between manufacturability and functionality. 

This project underscores the integration of low-cost components 

and open-source tools to develop scalable control systems. Potential 

applications include robotics, automation, and precision handling. 

Future work aims to incorporate faster microcontrollers for 

improved response and expand functionality to handle more complex 

dynamics. 

Keywords—Stewart Platform, parallel manipulation, computer 

vision tracking, dynamic stabilization, motion control system 

I. INTRODUCTION 

The Stewart platform is a type of parallel manipulator widely 
recognized for its precision and versatility in applications such 
as motion simulation, robotics, and automation. This project 
aims to develop a simplified Stewart platform configured for 
three degrees of freedom (3-DOF) to dynamically balance a ball. 
The system combines mechanical design, mathematical 
modeling, and control system implementation to achieve precise 
motion control and stability. 

The platform’s design focuses on cost-effectiveness and 
scalability by integrating low-cost components such as an 
Arduino microcontroller and a Pixy2 camera for computer 

vision. A proportional-integral-derivative (PID) control 
algorithm uses real-time feedback to adjust the platform’s tilt 
angles and stabilize the ball. The system demonstrates how 
advanced mechatronic concepts can be implemented with 
accessible tools, making it a valuable case study for robotics and 
educational research. 

The following subsections detail the system’s key 
components, including position detection and mechanical 
construction, and outline their contributions to the overall design 
and functionality. 

A. Position Detection 

Accurate position detection is vital for the success of the 
ball-balancing system. The primary requirement of the position 
sensor is to provide real-time feedback with sufficient resolution 
and speed to track the ball's movement. After evaluating various 
alternatives, including piezoelectric sensors and computer 
vision, the Pixy2 camera sensor was selected due to its onboard 
image processing capabilities and 60 frames per second speed. 
This camera allows for effective tracking of the ball's position in 
the X, Y, and Z axes without overburdening the microcontroller. 

Figure 1: PixyMon Camera Feed 

The Pixy2 camera simplifies image processing tasks by 
filtering pixels, adjusting brightness, and setting signature 
thresholds. These features reduce computational demands and 
enable quick and accurate data transfer to the Arduino Uno R4 
microcontroller. It simply sends out x, y, and z coordinates to be 
interpreted by the Arduino. This combination ensures that 
corrective actions can be calculated and executed in near real-
time. In Figure 1 above, the live camera feed can be seen as it 
looks it the PixyMon software that is used to tune the cameras 
parameters. Parameters such as pixel filtering, brightness, and 
signature thresholds can all be modified in the software that is 
included with the Pixy2 camera. 
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Alternative approaches, such as using multiple infrared or 
ultrasonic and piezoelectric sensors, were considered but 
deemed less effective due to their limited precision in 
continuous tracking and increased system complexity. The 
camera's ability to provide detailed positional data proved 
crucial in achieving the project’s accuracy and responsiveness 
goals. 

B. Mechanical Construction 

The mechanical construction of the platform, referred to as 
the plant, plays a central role in ensuring stability and precision. 
The primary requirements of the plant are rigidity, low friction 
at joints, and compatibility with the chosen actuation methods. 
A Stewart platform design was chosen for its inherent stability 
and ability to achieve three degrees of freedom. Compared to 
alternative designs, such as six-degree-of-freedom (6-DOF) 
platforms, the simplified 3-DOF configuration reduced cost and 
complexity while still meeting the project’s goals. Looking at 
Figure 2, the different possible configurations for a Stewart 
Platform can visualized. We each considered these designs when 
designing our application. 

 

Figure 2: Common Stewart Platform Configurations 

The plant incorporates three linear actuators, each powered 
by Nema 17 stepper motors with integrated encoders for closed-
loop control. Bearings were added at moving joints to reduce 
friction and wear, ensuring smooth operation and prolonged 
durability. The frame and actuators were constructed using 
aluminum for its strength-to-weight ratio, while 3D-printed 
components were used for custom fittings to maintain cost 
efficiency and manufacturability.  

Figure 3: CAD Model of our system 

The chosen actuation method relies on revolute, prismatic, 
and spherical (RPS) joints, which allow precise control of the 
platform's orientation. The actuators translate control signals 
into platform tilt adjustments, enabling accurate compensation 
for ball movement. Alternative configurations, such as 6-DOF 

platforms or systems with pneumatic actuators, were considered 
but excluded due to their higher cost and increased system 
complexity. As shown above in Figure 3, the actuators and entire 
system CAD model can be seen, showing the actuators and their 
design. 

This design strikes a balance between functionality, 
affordability, and manufacturability, making it a practical choice 
for both research and educational purposes. 

II. SYSTEM DESIGN 

The design of the Stewart platform emphasizes the 
integration of mechanical precision, effective actuation, and 
vision-based feedback to achieve dynamic ball balancing with 
three degrees of freedom (3-DOF). This section focuses on the 
platform’s mechanical configuration, actuation systems, and 
vision integration. 

The mechanical structure of the platform is constructed 
primarily from aluminum, chosen for its combination of 
strength, durability, and lightweight properties. The circular 
platform has a diameter of 1.5 feet, providing a controlled area 
for ball movement. The base plate, also made of aluminum, 
serves as a rigid foundation, ensuring stability and reducing 
vibrations during operation. Bearings are incorporated at all 
moving joints to minimize friction and mechanical wear, 
enhancing long-term performance and reliability.  

Actuation is achieved through three linear actuators, each 
driven by NEMA 17 stepper motors equipped with a 5.18:1 
planetary gearbox for enhanced precision and torque. These 
actuators are connected to the platform and the base plate using 
revolute, prismatic, and spherical (RPS) joints. The revolute 
joint enables angular control at the motor, the prismatic joint 
facilitates linear motion, and the spherical joint allows multi-
directional tilting. This arrangement ensures that the platform 
can achieve precise tilt and height adjustments, as required for 
maintaining the ball’s stability. 

The Pixy2 camera is employed as the primary feedback 
sensor, offering real-time tracking of the ball’s position in three 
dimensions. Mounted directly above the platform, the camera 
provides an unobstructed view, capturing positional data at 60 
frames per second. Onboard processing within the camera 
extracts the ball’s coordinates, which are then transmitted to an 
Arduino Uno R4 microcontroller for use in the control 
algorithm. This approach reduces computational demands on the 
microcontroller and simplifies the system architecture compared 
to alternative sensor configurations. The final design and linear 
actuators can be seen below in Figure 4, showing the tall camera 
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stand which served as the main source of feedback for our 
system as well as the stepper motors and drivers. 

Figure 4: Final Design 

The actuation process is driven by the results of inverse 
kinematics calculations, which determine the necessary 
adjustments in actuator lengths to achieve the desired platform 
tilt and height. Stepper motor movements execute these 
adjustments, translating control signals into precise physical 
changes in platform orientation. The closed-loop feedback 
system continuously monitors the ball’s position and updates the 
actuator commands, allowing for rapid compensation of 
disturbances. 

Power is supplied by a 24V system that provides consistent 
energy to the stepper motors, ensuring smooth and reliable 
operation. The Arduino Uno R4 coordinates all components, 
integrating vision feedback with actuation control to maintain 
dynamic stability. The platform’s compact and robust design, 
combined with efficient vision-based feedback, enables precise 
motion control while maintaining simplicity and 
manufacturability. 

 

III. MATHEMATICAL MODELING 

A. Inverse Kinematics 

 In order to accurately model the dynamic behavior of a 
mobile platform, it is crucial to establish the relationship 
between the platform's position and orientation, the joint 
variables, and its geometric parameters. For platforms like the 
Stewart platform, two primary approaches are used: inverse 
kinematics and direct kinematics. 

Direct kinematics involves solving a set of nonlinear 
equations to determine the position and orientation of the 
manipulator when the lengths of the actuators are known. 
However, this method can lead to multiple solutions. For 
example, a servo-controlled Stewart platform generates a system 
of 18 equations with up to 40 possible solutions [1]. In contrast, 
inverse kinematics provides a more practical and efficient 
approach. It simplifies the process by calculating the actuator 
lengths and motor parameters directly from the desired position 
or tilt angles of the upper platform. This avoids the complexity 
of determining the platform's position and orientation based on 
actuator conditions and operating parameters. 

 

Figure 5: Physical Structure of platform with linear 
actuators 

 Given these advantages, inverse kinematics is particularly 
well-suited for deriving the dynamic model of the platform. By 
focusing on the variations in distances between the upper 
platform and the fixed lower platform, as well as the motor 
parameters, the desired position of the platform can be 
effectively achieved. This approach ensures precise and stable 
control in dynamic applications. 

 

Figure 6:  Platform Rotation 𝑖𝑡ℎ linear actuator 

In Figure 6, relative to the center of the platform, the 𝑖𝑡ℎ 
vector 𝑝𝑖  denotes the location of the spherical joint in the 
platform and the vector 𝑏𝑖 denotes the location of the rotational 

joint at the motor or base. The vector 𝑇⃗  is the vertical 
translational reference distance between the base and the 
platform. The vector 𝑙𝑖  denotes the length of the 𝑖𝑡ℎ  actuator, 
required to tilt the platform based on the roll or pitch angle of 

the platform. The vector 𝑄𝑖⃗⃗  ⃗ defines the coordinates of the anchor 
point 𝑝𝑖  relative to the base plate given by,  

𝑄𝑖 = 𝑇𝑖⃗⃗  + 𝑅𝑏
𝑝
∙ 𝑃𝑖⃗⃗                                     (1) 

where, 𝑃𝑖⃗⃗  is the location of the of the spherical end-effector from 
the origin of the platform in the reference frame of the platform. 

𝐵𝑖⃗⃗  ⃗ is the location of the rotational joint expressed in the reference 
frame of the base plate. 
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Figure 7: Platform and Base location of end-effectors 

 The rotational matrix 𝑅𝑏
𝑝

, is the rotation matrix, of the 

platform frame with respect to the base, given by the 
combination of each rotation 𝑅𝑥 (roll angle 𝛼), 𝑅𝑦 (pitch angle 

𝛽), and 𝑅𝑧 (yaw angle 𝜓), 

𝑅𝑥 = [
1 0 0
0 cos 𝛼 − sin 𝛼
0 sin 𝛼 cos 𝛼

]                                (2) 

𝑅𝑦 = [
cos𝛽 0 sin 𝛽
0 1 0

− sin 𝛽 0 cos 𝛽
]                                (3) 

𝑅𝑧 = [
cos𝜓 − sin𝜓 0
sin𝜓 cos𝜓 0
0 0 1

] = [
1 0 0
0 1 0
0 0 1

]                  (4) 

 Note that the rotation matrix about the yaw angle is 
evaluated as the identity matrix since there is no rotation about 
the z-axis due to design of the system, therefore 𝜓 = 0. Thus, 
the rotational matrix is given by,  

𝑅𝑏
𝑝
= 𝑅𝑧 ∙ 𝑅𝑦 ∙ 𝑅𝑥 

𝑅𝑏
𝑝
= [

cos𝛽 sin 𝛼 ∙ sin 𝛽 sin 𝛽 ∙ cos 𝛼
0 cos𝛼 − sin 𝛼

− sin 𝛽 cos 𝛽 ∙ sin 𝛼 cos 𝛼 ∙ cos 𝛽
]             (5) 

Finally, the length of the 𝑖𝑡ℎ parallel actuator is found to be,   

𝑙𝑖⃗⃗ = 𝑇𝑖⃗⃗  + 𝑅𝑏
𝑝
∙ 𝑃𝑖⃗⃗ − 𝐵𝑖⃗⃗  ⃗                                (6) 

However, the length of the parallel manipulator is achieved 
by the rotational angle of the stepper motors as denoted in figure 
8,  

 

Figure 8: Linear RPS joint 

By applying, the law of cosines and the fixed lengths of the 
parallel manipulator, results in the following equation that 
relates the angle of the motor 𝜃𝑖  and length of the parallel 
manipulator 𝑙𝑖.  

𝑓𝑖
2 = 𝑠𝑖

2 + 𝑙𝑖
2 − 2𝑠𝑖𝑙𝑖 cos 𝜃𝑖                       (7) 

Finally, the angle 𝜃𝑖 of the 𝑖𝑡ℎ motor based on the platforms 
rotation can be determined by,  

𝜃𝑖 = cos
−1 (

𝑙𝑖
2+𝑠𝑖

2−𝑓𝑖
2

2𝑠𝑖𝑙𝑖
)                           (8) 

B. Dynamic Modeling 

 

The Stewart platform plant model serves as the foundation 

for analyzing the dynamics of a ball-and-plate control system. 

This system is a common benchmark in control theory and 

robotics due to its complexity and multi-variable nature. It 

involves balancing a ball on a rigid plate by adjusting the plate's 

tilt angles through actuators. The dynamic model provides a 

mathematical framework for designing controllers, simulating 

system behavior, and predicting performance under various 

conditions. The following section outlines the assumptions, 

energy analysis, and derivation of the plant model, culminating 

in its transfer functions. 

Figure 9: Ball in plane with pitch and roll rotation 

 

1) Assumptions: 

The ball and plate system analyzed under the Stewart 

platform model operates under the following assumptions: 

1. The ball rolls on the platform without slipping. 

2. The ball is a solid, symmetric, and homogeneous 

sphere. 

3. Friction between the ball and the plate is negligible. 

4. The ball maintains continuous contact with the plate. 

5. The plate is rigid and homogeneous. 

 

2) Energy Analysis 

The Lagrangian formulation simplifies the analysis of our 

system by expressing dynamics in terms of kinetic and potential 

energy. For the ball-and-plate system, this approach captures 

the interaction between the ball’s motion and the plate’s tilt 

using generalized coordinates. The resulting equations of 
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motion form the foundation for control design and stability 

analysis. 

The dynamic behavior of the system is characterized using 

the Lagrange equation, expressed as: 

 

𝐿(𝑡) =  ∑𝑇(𝑡) − ∑𝑉(𝑡)                           (9) 

Where 𝐿(𝑡) is the difference between the kinetic energy 𝑇 

and the potential energy 𝑉 of the system.  

Figure 10: Ball rolling without slipping (pitch ∠𝛼) 

 

a) Kinetic Energy 

 
Figure 11: FBD Ball rolling w/out slipping axis rotation  

 

The total kinetic energy consists of contributions from the 

ball and the plate: 

𝑇 = 𝑇𝑏𝑎𝑙𝑙 + 𝑇𝑝𝑙𝑎𝑡𝑒                               (10) 

 

Where, the ball's kinetic energy accounts for translational 

and rotational motions: 

𝑇𝑏𝑎𝑙𝑙 =
1

2
𝑚𝑣𝑏

2 +
1

2
𝐼𝑏𝜔𝑏

2                           (11) 

We can define the position vector of the ball from the origin 

of the plate, as 𝑠 = [𝑥′ 𝑦′ 0]𝑇, and the linear velocity vector 

of the ball from the origin as 𝑣𝑏 =
𝑑𝑠 

𝑑𝑡
= [𝑥′̇ 𝑦′̇ 𝑜]𝑇. The ball 

translational kinetic energy can be modeled as,   

𝑇𝑏𝑡𝑟𝑎𝑛𝑠 =
1

2
𝑚(𝑥′̇

2
+ 𝑦′̇

2
)                        (12) 

 

The angular velocity of the ball can be simplified by the fact 

that the linear velocity is proportional to the angular velocity 

and the distance from the rotation axis, given by 𝑣𝑏⃗⃗⃗⃗ = 𝜔𝑏⃗⃗⃗⃗  ⃗ × 𝑟𝑏⃗⃗  ⃗, 
where 𝑟𝑏⃗⃗  ⃗ = [0 0 𝑟𝑏]

𝑇 is the radius of the ball described in 

the 3D reference frame. The ball rotational kinetic energy can 

be modeled as,  

 𝑇𝑏𝑟𝑜𝑡 = 
1

2
𝐼𝑏 (

𝑥′̇
2

𝑟𝑏
2 +

𝑦′̇
2

𝑟𝑏
2 )                          (13)  

The total kinetic energy of the ball can be modeled by the 

following, 

∴ 𝑇𝑏𝑎𝑙𝑙 = 
1

2
𝑚(𝑥′̇

2
+ 𝑦′̇

2
) + 

1

2
𝐼𝑏 (

𝑥′̇
2

𝑟𝑏
2 +

𝑦′̇
2

𝑟𝑏
2 )         (14) 

 

The plate's kinetic energy includes translational and 

rotational motions. 

𝑇𝑝𝑙𝑎𝑡𝑒 =
1

2
𝑚𝑣𝑝

2 +
1

2
𝐼𝑠𝑦𝑠(𝜔𝑝𝑙𝑎𝑡𝑒)

2
                 (15) 

 

The angular velocity of the plate can be modeled by 

observation, which is simply the combination of pitch and roll, 

𝜔𝑝 =
∆𝜃

∆𝑡
 in the 3-dimensional coordinate system results in 

𝜔𝑝⃗⃗⃗⃗  ⃗ = [𝛼̇ 𝛽̇]𝑇 . Furthermore, the moment of inertia for the 

system can be represented as the sum of moments between the 

ball and plate given by   𝐼𝑠𝑦𝑠 = 𝐼𝑏𝑎𝑙𝑙 + 𝐼𝑝𝑙𝑎𝑡𝑒 , thus the plate’s 

rotational kinematic motion after linearization can be 

represented by, 

𝑇𝑝(𝑟𝑜𝑡) =
1

2
(𝐼𝑝 + 𝐼𝑏)(𝛼̇

2 + 𝛽̇2)                      (16) 

 

The linear velocity of the plate is dependent on the reference 

location on the plate from the center of the plate 𝑟 = [𝑥 𝑦] 

and is given by 𝑣𝑝 = 𝑟 ∙ 𝜔⃗⃗ 𝑝
𝑇
= 𝑥𝛼̇ + 𝑦𝛽̇ . The plate 

translational kinetic energy can be modeled as. 

𝑇𝑝(𝑡𝑟𝑎𝑛𝑠) =
1

2
𝑚(𝑥𝛼̇ + 𝑦𝛽̇)

2
                        (17) 

The total kinetic energy of the plate can be modeled by the 

following, 

∴ 𝑇𝑝𝑙𝑎𝑡𝑒 = 
1

2
𝑚(𝑥𝛼̇ + 𝑦𝛽̇)

2
+

1

2
(𝐼𝑝 + 𝐼𝑏)(𝛼̇

2 + 𝛽̇2)      (18)  

b) Potential Energy 

The total potential energy consists of contributions from the 

ball and the plate: 

𝑉 = 𝑉𝑏𝑎𝑙𝑙 + 𝑉𝑝𝑙𝑎𝑡𝑒                                (19) 

However, since the plate is static and always in contact with 

the ball, it  has no potential energy contribution to the system 

𝑉𝑝𝑙𝑎𝑡𝑒 = 0 . The only potential energy contribution to the 

system is gravitational effect on the ball given by 𝑉𝑝𝑙𝑎𝑡𝑒 =

 −𝑚𝑔ℎ, where ℎ, is the modeled about the combination of pitch 

and roll angles of the plate ℎ = 𝑥 sin 𝛼 + 𝑦 sin 𝛽.  

∴ 𝑉𝑏𝑎𝑙𝑙 = −𝑚𝑔(𝑥 sin 𝛼 + 𝑦 sin 𝛽)                  (20) 

 

3) Langrian Dynamics  

 

The Euler-Lagrange equation denotes the relationship 

between the Lagrangian of a system and the system's equations 

of motion. The equation provides a systematic way to derive the 

equations of motion for a system using the principle of least 

action. The Lagrangian for the ball and plate system is,  

 

𝐿 =
1

2
𝑚(𝑥′̇

2
+ 𝑦′̇

2
) + 

1

2
𝐼𝑏 (

𝑥′̇
2

𝑟𝑏
2 +

𝑦′̇
2

𝑟𝑏
2 ) +

1

2
𝑚(𝑥𝛼̇ + 𝑦𝛽̇)

2
+

1

2
(𝐼𝑝 + 𝐼𝑏)(𝛼̇

2 + 𝛽̇2) + 𝑚𝑔(𝑥 sin 𝛼 + 𝑦 sin 𝛽       (21) 
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For a system described by a Lagrangian, 𝐿(𝑞, 𝑞̇, 𝑡) , the 

Euler-Lagrange equation is, 

 
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑞̇
) −

𝜕𝐿

𝜕𝑞
= 𝑄                              (22) 

where 𝑞  represents the generalized coordinates, 𝑞̇  represents 

the time derivatives of these coordinates (generalized 

velocities) and 𝑡  is time. 𝑄  represents the generalized non-

conservative forces of the system, in our system they are the 

torques generated by the rotational movement of the plate about 

the origin represented. 

𝑞 = [

𝑥
𝑦
𝛼
𝛽

] , 𝑞̇ = [

𝑥̇
𝑦̇
𝛼̇
𝛽̇

] , 𝑄 = [

0
0
𝜏𝑥
𝜏𝑦

]                       (23) 

After evaluating the Euler-Lagrange with the derived 

Lagrangian, and taking the partial derivatives respectively,  it 

yields the following second order system of equations,  

{
  
 

  
 (𝑚 +

𝐼𝑏

𝑟𝑏
2) 𝑥

′̈ − 𝑚(𝑥𝛼̇2 + 𝑦𝛼̇𝛽̇ + 𝑔 sin 𝛼) = 0        (24)

(𝑚 +
𝐼𝑏

𝑟𝑏
2) 𝑥

′̈ − 𝑚(𝑥𝛼̇2 + 𝑦𝛼̇𝛽̇ + 𝑔 sin 𝛼) = 0        (25)

𝑑𝑠𝑑𝑓𝑑(26)
𝑑𝑑(27)

 

However, equations (26 & 27), are related to the non-

conservative forces of the system, their solutions are coupled 

with the torques of the plate and are not useful for our 

application. 

Furthermore, the equations can be simplified, by 

employing the small angle theorem to approximate sin 𝛼 ≈ 𝛼, 

since the angle tilt of the platform is very small (much less than 

15 degrees),  𝛼̇2 = 0 , 𝛽̇2 = 0 , 𝛼̇2 = 0  and 𝛼̇𝛽̇ = 0 . This 

results in simplified equations,  

 

                         𝑚𝑥̈′ +
𝐼𝑏

𝑟𝑏
2 𝑥̈ − 𝑚𝑔𝛼 = 0                        (28) 

                        𝑚𝑦̈′ +
𝐼𝑏

𝑟𝑏
2 𝑦̈ − 𝑚𝑔𝛽 = 0                        (29) 

where, the moment of inertia is defined as, 𝐼𝑏 =
2

5
𝑚𝑟𝑏

2, it 

is important to note that after substituting the moment of inertia 

the resulting mathematical model is determined to be 

independent of the mass of the ball, which in counter to the 

natural assumption that a heavier ball falls faster, however, this 

proves that the system is behaving under the assumption of 

rolling without slipping.  

Finally, the ball and plate Stewart platform can be modeled 

by the following set of second order linear equations,  

                            𝑥̈′ =
5

7
𝑔𝛼                       (30) 

                             𝑦̈′ =
5

7
𝑔𝛽                            (31) 

 

C. Controller Design  

In order to design a controller for this system, a prerequisite 

is to check the system’s stability and verify the criterion for 

stability. Applying a Laplace transformation to the 

mathematical model results in the following continuous time 

domain system, 

                     𝐺𝑝𝑥(𝑠) =
Α(𝑠)

𝑋(𝑠)
=

5𝑔

7𝑠2
                           (32) 

                    𝐺𝑝𝑦(𝑠) =
Β(𝑠)

𝑋(𝑠)
=

5𝑔

7𝑠2
                           (33) 

Figure 12: Block Diagram of PID System 

 

 The block diagram shown in Figure 12 represents the 

feedback control loop, where the desired position inputs 𝑋𝐷(𝑠) 
and 𝑌𝐷(𝑠) are compared to the actual positions 𝑋(𝑠) and 𝑌(𝑠) 
to compute the error signal 𝐸(𝑠) . This error is processed 

through the PID controller 𝐺𝐶(𝑠), which generates the control 

input 𝑢(𝑡)  based on proportional, integral, and derivative 

components of the error. Feedback from the Pixy2 camera 

system 𝐻(𝑠) ensures real-time updates of the ball's position, 

enabling continuous correction of platform tilt to maintain 

dynamic stability. The diagram highlights the integration of the 

vision system, control algorithms, and mechanical actuation, 

forming a cohesive feedback loop critical for achieving precise 

ball balancing. 

 
Figure 13: Root Locus of Open Loop 

 

The root locus in Figure 13 shows that the system is 

marginally stable as indicated by the two poles located as zero, 

this demonstrates that a controller could stabilize the system.  

D. Control Law (PID controller)  

The chosen controller for this application to stabilize the 

system is a PID controller which operates on the principle of 

minimizing the error between a desired setpoint and the actual 

system output. The control law is defined as: 
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𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝜏)𝑑𝜏
𝑡

0
+ 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
            (34) 

Where, 𝑒(𝑡) is the error at time 𝑡, calculated as the difference 

between the desired and actual position or orientation. 𝐾𝑝is the 

proportional gain, which scales the error, 𝐾𝑖 is the integral gain, 

which accumulates past errors. 𝐾𝑑, is the derivative gain, which 

predicts future error trends. 

In Figure 14, it demonstrates the step response in 

continuous time domain of the tuned system with a PID 

controller utilizing MATLAB’s autotune feature.  

 

 
Figure 14: Step Response with tuned PID 

 

The exact values of this tuned controller are not relevant for 

our application, it only demonstrates the system’s response to 

an applied PID controller and the effectiveness of applying a 

control law to stabilize the system. In the real world, the 

applications of a continuous time domain controller are not 

practical and therefore a discrete time domain controller is 

needed for practical applications.  

 

E. Discrete time domain analysis ZOH (Z-Domain)  

In modern control systems, the use of a discrete PID 

controller is not only advantageous but often necessary. 

Discrete controllers are essential because most real-world 

systems rely on digital hardware, such as microcontrollers or 

microprocessors, which operate in discrete time. These 

controllers are inherently designed to process data and compute 

outputs at specific intervals, aligning seamlessly with the 

periodic nature of sensor feedback and actuation in the system. 

For example, the Stewart platform's vision-based feedback 

system provides positional data at discrete intervals, making a 

discrete PID controller an ideal choice for directly handling this 

sampled data. 

To design a PID controller for the Stewart platform, a zero-

order hold (ZOH) method was used to discretize the system for 

practical application. It works by holding each discrete control 

value constant over the sampling interval, creating a piecewise 

constant signal that approximates the desired continuous 

control input. The z-transform for the discretized plant from 

continuous time domain 𝐺𝑝(𝑠) to discrete-time, becomes, 

𝐺𝑝(𝑧) = (1 − 𝑧
−1)ℤ {

𝐺𝑝(𝑠)

𝑠
}    

𝐺𝑝(𝑧) = (1 − 𝑧
−1)ℤ {

7

𝑠3
}  

 

𝐺𝑝(𝑧) =
3.5𝑇2(𝑧+1)

𝑧2−2𝑧+1
                             (35) 

 

The resulting discretized plant can be applied to the control 

of the ball on the platform along the coordinate axis and can 

therefore be used to describe the motion of the ball along the  

𝑥- and 𝑦- axes due to symmetry.  

The PID control must also be discretized and for this method, a 

ZOH with a forward Euler configuration was applied and 

resulted in the following control law, 

𝐶(𝑧) = 𝐾𝑝 + 𝐾𝑖
𝑇

𝑧−1
+ 𝐾𝑑

𝑧−1

𝑇
                     (36)  

This technique is essential for interfacing digital 

controllers with continuous physical systems, ensuring 

compatibility and enabling accurate system response. While 

simple and effective, ZOH introduces a piecewise nature to the 

signal, which may lead to minor lag or high-frequency effects 

in fast-changing systems. 

IV. IMLEMENTATION AND TESTING 

The resulting Discrete-Time functions provided us with a 

start for the tuning process. For this application, a sample time 

of 0.2 seconds was used. The limiting factor for our feedback 

control system being the Pixy2 camera which operates at a 

frequency of 60fps which leads to the sample time of 0.2 

seconds as our limiting factor. after discretization of our closed 

loop feedback system, it results in the following discrete-time 

closed-loop transfer function with a tuned PID,  

 

𝐻(𝑧) =
0.07708𝑧3−0.05606𝑧2−0.07694𝑧+0.0562

1.077𝑧3−3.056𝑧2+2.923𝑧−0.9438
              (37) 

 

Figure 15 shows the step response of two discretized tuned 

responses that were within our desired specifications.  The 

compared step responses highlight distinct differences between 

the fast and slow systems in their closed-loop step responses. 

The fast system demonstrates a slower rise time of 1.4 seconds 

compared to 1.0 second for the slow system, but it stabilizes 

significantly quicker, with a settling time of 8.6 seconds versus 

12.8 seconds. Additionally, the fast system exhibits lower 

overshoot (22.57%) and a smaller peak amplitude (1.2257), 

indicating more controlled and stable behavior. In contrast, the 

slow system shows a more aggressive response with higher 

overshoot (44.52%) and a peak amplitude of 1.4452, though it 

reaches this peak earlier at 2.4 seconds compared to 4.0 seconds 

for the fast system. However, the increased overshoot and wider 

steady-state range of the slow system (0.8386 to 1.4452) 

suggest reduced precision compared to the fast system, which 

maintains a narrower steady-state range (0.9048 to 1.2257).  
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Figure 15: Discrete Time Closed Loop Step Response 

 

Overall, the fast system is better suited for applications 

requiring stability and precision, while the slow system 

prioritizes rapid initial response at the expense of overshoot and 

settling time. 

A. Physical Performance of PID controller 

After the system was tuned with a PID controller, the values 

of the PID gains were programmed into Arduino Uno (See 

Appendix A), the Stewart platform robot.  The resulting 

response matched our expectations of our designed discrete-

time system. Effectively validating our design of the PID 

controller. The fast tuned system physically demonstrated a 

settling time of about 8 seconds with some overshoot.  

In the Stewart platform application, overshoot allows the 

system to reach the desired position or target state faster. In 

systems where rapid responses are essential for controlling the 

ball's movement on the platform. The presence of overshoot 

minimizes the time it takes for the ball to reach a new position. 

Overshoot effectively deals with the dynamic and fast-changing 

ball's position while maintaining stability and achieving the 

control objective. For Example, when the platform is tilted to 

counteract the ball's motion, a slight overshoot in the platform's 

tilt can ensure the ball's movement is reversed promptly, 

minimizing errors before the system settles. However, the 

overshoot must be carefully balanced to avoid instability or 

excessive oscillations. 

 

V. CONCLUSION 

This study successfully developed and implemented a 

3RPS-Stewart platform, a compact parallel manipulator, to 

dynamically stabilize a ball using precision actuation and a 

PID-based closed-loop control system. By leveraging low-cost 

components such as the Arduino Uno R4 microcontroller and 

Pixy2 camera for real-time vision tracking at 60 frames per 

second, the platform achieved a settling time of 8.6 seconds 

with controlled overshoot of 22.57%. These metrics were 

realized through meticulous integration of mechanical, 

electronic, and software systems. 

 

Inverse kinematics computations translated control inputs 

into precise platform tilts, enabling seamless dynamic 

adjustments. The design optimizes manufacturability and 

functionality by combining lightweight aluminum components 

with custom 3D-printed fittings. Mathematical modeling using 

the Euler-Lagrange method provided a rigorous foundation for 

control design, while discretization through a zero-order hold 

(sampling time of 0.2 seconds) ensured compatibility with 

digital control systems. 

 

The experimental outcomes validated the effectiveness of the 

proposed control strategy. The system demonstrated rapid 

stabilization with a rise time of 1.4 seconds, minimal steady-

state error, and reliable performance under dynamic conditions. 

These achievements highlight the feasibility of creating high-

performance robotic platforms with accessible and cost-

effective technology. 

 

This work paves the way for further exploration in fields like 

robotics, automation, and precision handling. Future 

enhancements could include the adoption of faster 

microcontrollers for improved response times, as well as 

expanded capabilities to address more complex dynamic 

systems. The results underscore the potential of scalable and 

robust mechatronic designs for research, industrial, and 

educational applications. 
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MAIN.ino 
/***************************************************  

  3RPS Stewart Platform Ball Bounce & Balance 

  ---------------------------------------------- 

  @description: this program operates a 3DOF RPS Stewart Platform to balance a ball on a platform 

                using computer vision for position detection & PID controller to control the balls position.  

 

  @authors: Jose Ramirez & Ethan Lendo 

  @institution: Cal Poly Pomona, Dept. of Mech. Engineering 

  @date: 07-22-2024 

  @version: 1.0 

 

 ****************************************************/ 

 /* TO-DO 

    -> tune the PID 

    -> Develop bounce 

    -> Develop ball patterns 

 

*/ 

#include <Arduino.h> 

#include <Wire.h> 

#include <Pixy2.h> 

#include <AccelStepper.h> 

#include <MultiStepper.h> 

#include "InverseKinematics.h" 

 

#define DEBUG 0 // for debugging 1 is on, else off 0 

 

#if DEBUG == 1 

#define debug(db) Serial.print(db) 

#define debugln(db) Serial.println(db) 

#else 

#define debug(db) 

#define debugln(db) 

#endif 

 

// Camera Object 

Pixy2 pixy; 

 

// Pixy2 camera offsets (camera's center in pixels) 

constexpr double xOffset = 158.0;     // Updated x offset of the platform's center in pixels 

constexpr double yOffset = 104.0;     // Updated y offset of the platform's center in pixels 

constexpr double zOffset = 0.0; 

 

// Platform and camera parameters 

constexpr double circumscribedRadius = 240.0;   // 240 Radius of the circumscribed circle for the hexagon in mm 

constexpr double distanceToPlatform = 460.0;    // Distance from camera to the platform in mm 

 

double ball[2];               // X and Y coordinates of the ball 

constexpr int x = 0, y = 1;   // Define x, y array indexes 

bool detected = false;        // flag to verify ball is detected 

 

// Stepper Motors Object 

AccelStepper stepperA(AccelStepper::DRIVER, 9, 8);  //(driver type, STEP, DIR) Driver A 

AccelStepper stepperB(AccelStepper::DRIVER, 5, 4);  //(driver type, STEP, DIR) Driver B 

AccelStepper stepperC(AccelStepper::DRIVER, 3, 2);  //(driver type, STEP, DIR) Driver C 

 

// Create instance of MultiStepper 

MultiStepper steppers;            

 

// Stepper Motor Variables 

double speed[3] = {0, 0, 0};     // Motor speed array 

double speedPrev[3] = {0, 0, 0}; // Previous motor speed array 

int pos[3] = {0, 0, 0};          // Array to hold angle position of each servo 

constexpr double angleOrigin = -2.24;  // Origin angle at the start 

constexpr double ks = 500.0;           // Speed multiplier constant 

constexpr double angleToStep = 3200.0 / 360.0; // Convert angle to step count (microsteps * gearRatio / 360 degrees) 

constexpr double gearRatio = 5.18; 

 

// PID Constants (2s settling time) 

double kp = 0.072, ki = 0.0025, kd = 0.07; 

 

//double kp = 0.075, ki = 0.0025, kd = 0.07; //pretty good 

//double kp = 0.068, ki = 0.0025, kd = 0.078; // almost perfect 

//double kp = 0.068, ki = 0.002, kd = 0.25 

//double kp = 0.03263, ki = 0.001886, kd = 0.1411; 

//double kp = 0.01658, ki = 0.0008346, kd = 0.0823; 

//double kp = 0.04302, ki = 0.002855, kd = 0.1621; 

//double kp = 0.07756, ki = 0.004005, kd = 0.3755; 

 

double error[2] = {0, 0}, errorPrev[2] = {0, 0}, integr[2] = {0, 0}, deriv[2] = {0, 0}, out[2] = {0, 0}, outf[2] = {0, 0};  

// PID terms for X and Y directions 
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// Add a sample time for PID calculations 

constexpr unsigned long sampleTime = 20; // Sample time in milliseconds 

 

// Variables for PID timing 

unsigned long lastPIDTime = 0;                                                                                             

// Variables to capture initial times 

 

/*  Plant(b, p, f, g) 

      b = distance from the center of the base to any of its corners 

      P = distance from the center of the platform to any of its corners 

      f = length of link #1 

      s = length of link #2 

*/ 

Plant plant(125.0, 125.0, 100.0, 60.0); 

 

// Function Declarations 

void moveTo(double hz, double nx, double ny); 

void findBall(); 

void PID(double setPointX, double setPointY); 

void convertToMillimeters(double &pixelX, double &pixelY); 

 

/////////////////////////////////////////////////////////////////////////////////////// 

///  

/// @brief Arduino setup() Function. 

///  

///   This function initializes serial communication with PIXY2 and the initial servo  

///   parameters needed to initialize the platform.  

///   

////////////////////////////////////////////////////////////////////////////////////// 

void setup() { 

  // Initialize Serial communication 

  Serial.begin(115200); 

   

  // Initialize Pixy2 

  pixy.init(); 

 

  // Optionally turn on Pixy2's LED 

  // pixy.setLamp(1, 1); 

 

  // Set max speed and acceleration for steppers 

  stepperA.setMaxSpeed(6000); 

  stepperA.setAcceleration(3000); 

 

  stepperB.setMaxSpeed(6000); 

  stepperB.setAcceleration(3000); 

 

  stepperC.setMaxSpeed(6000); 

  stepperC.setAcceleration(3000); 

 

  // SteppersControl instance for multi stepper control 

  steppers.addStepper(stepperA); 

  steppers.addStepper(stepperB); 

  steppers.addStepper(stepperC); 

 

  moveTo(37.75, 0, 0);  // Moves the platform to the home position located at hz=37.75mm 

  delay(100); 

} 

 

/////////////////////////////////////////////////////////////////////////////////////// 

///  

/// @brief Main Arduino Loop() Function. 

///  

///   This loop executes the PID control of the Platform.  

///  

////////////////////////////////////////////////////////////////////////////////////// 

void loop() { 

  PID(0, 0);  // (X setpoint, Y setpoint) 

} 

 

/// @fn Find the location of the ball using the pixy2 cam  

void findBall() { 

  // Request blocks (objects) from Pixy2 

  int numBlocks = pixy.ccc.getBlocks(); 

 

  debugln((String)"Number of Balls Detected: " + numBlocks); 

 

  if (numBlocks == 1) { 

    detected = true; 

 

    // Set current X and Y coordinates for object 0 (assuming this is the ball) 

    ball[x] = pixy.ccc.blocks[0].m_y;  // Absolute Y location of the ball, now treated as X 

    ball[y] = pixy.ccc.blocks[0].m_x;  // Absolute X location of the ball, now treated as Y 
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    debugln((String)"Absolute (X, Y) pixels: (" + ball[x] + ", " + ball[y] + ")"); 

    Serial.println((String)"Absolute (X, Y) pixels: (" + ball[x] + ", " + ball[y] + ")"); 

 

    // Calculate relative coordinates based on the center of the camera's field of view 

    ball[x] -= yOffset; 

    ball[y] -= xOffset; 

 

    debugln((String)"Relative (X, Y) pixels: (" + ball[x] + ", " + ball[y] + ")"); 

 

    // Convert relative coordinates (pixels) to real-world coordinates (mm) 

    convertToMillimeters(ball[x], ball[y]); 

     

    debugln((String)"Real-world (X, Y) mm: (" + ball[x] + ", " + ball[y] + ")"); 

 

  } else { 

    detected = false; 

    if (numBlocks > 1) { 

      debugln("MULTIPLE BALLS DETECTED!"); 

    } else { 

      debugln("NO BALL DETECTED"); 

    } 

  }  

} 

 

/// @fn PID control to calculate platform movement based on setpoints 

// Variables for time management 

unsigned long previousTimePID = 0; 

double elapsedTimePID; 

 

// Updated PID Function 

void PID(double setPointX, double setPointY) { 

  findBall();  // Find the location of the ball 

 

  if (detected) { 

    // Calculate elapsed time since last PID calculation 

    unsigned long currentTimePID = millis(); 

    elapsedTimePID = (currentTimePID - previousTimePID) / 1000.0;  // Convert ms to seconds 

    previousTimePID = currentTimePID; 

 

    for (int i = 0; i < 2; i++) { 

      // Determine which axis we're calculating for (0 = X, 1 = Y) 

      double setPoint = (i == 0) ? setPointX : setPointY; 

      double currentPos = (i == 0) ? ball[x] : ball[y]; 

 

      // Calculate the error 

      error[i] = currentPos - setPoint; 

 

      // Proportional term 

      double Pout = kp * error[i]; 

 

      // Integral term with windup guard 

      integr[i] += error[i] * elapsedTimePID; 

      // Limit for the integral to avoid windup 

      integr[i] = constrain(integr[i], -1000, 1000); 

      double Iout = ki * integr[i]; 

 

      // Derivative term (rate of change of error) 

      deriv[i] = (error[i] - errorPrev[i]) / elapsedTimePID; 

      deriv[i] = isnan(deriv[i]) || isinf(deriv[i]) ? 0 : deriv[i];  // Check for validity 

      double Dout = kd * deriv[i]; 

 

      // PID output for the axis 

      out[i] = Pout + Iout + Dout; 

      //outf[i] = constrain(out[i], -5, 5); 

      Serial.println((String) "I = " + Iout); 

 

      // Store the current error as previous error for next loop 

      errorPrev[i] = error[i]; 

    } 

  } else { 

    // If ball not detected, retry finding 

    findBall(); 

  } 

 

 

  // Move the platform based on PID output 

  moveTo(37.75, -out[0], -out[1]); 

  delay(5); 

 

  // Debugging output to monitor PID terms and output 

  debugln((String) "X OUT = " + out[0] + "   Y OUT = " + out[1]); 

  Serial.print("X_Input:"); 

  Serial.print(ball[x]); 
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  Serial.print(","); 

  Serial.print("X_Output:"); 

  Serial.println(out[0]); 

 

  Serial.print("Y_Input:"); 

  Serial.print(ball[y]); 

  Serial.print(","); 

  Serial.print("Y_Output:"); 

  Serial.println(out[1]); 

} 

 

/// @fn moves the steppers to the desired position based on the given X & Y coordinates 

/// @param hz height of the z translation from the platform. 

/// @param nx X- coordinate position of the ball relative to origin 

/// @param ny Y- coordinate position of the ball relative to origin 

void moveTo(double hz, double nx, double ny) { 

  // Check if ball is detected 

  if (detected) { 

    debugln("Ball Detected :) "); 

     

    // Calculate Stepper position 

    for (int i = 0; i < 3; i++) { 

      pos[i] = round((angleOrigin - plant.theta(i, hz, nx, ny)) * angleToStep * gearRatio); 

 

      // Calculate Stepper Motor Speeds 

      speedPrev[i] = speed[i]; 

      speed[i] = abs(pos[i] - ((i == 0) ? stepperA.currentPosition() : (i == 1) ? stepperB.currentPosition() : 

stepperC.currentPosition())) * ks; 

      speed[i] = constrain(speed[i], speedPrev[i] - 500, speedPrev[i] + 500);  // Limit speed change to smooth movement 

      speed[i] = constrain(speed[i], 0, 5000);                                 

    } 

     

    debugln((String) "Angle A = " + pos[0] / (angleToStep * gearRatio) + " degrees"); 

    debugln((String) "Angle B = " + pos[1] / (angleToStep * gearRatio) + " degrees"); 

    debugln((String) "Angle C = " + pos[2] / (angleToStep * gearRatio) + " degrees"); 

     

    // Set Calculated speed and target position 

    stepperA.setMaxSpeed(speed[A]); 

    stepperA.setAcceleration(speed[A] * 0.70); 

    stepperA.moveTo(pos[A]); 

 

    stepperB.setMaxSpeed(speed[B]); 

    stepperB.setAcceleration(speed[B] * 0.70); 

    stepperB.moveTo(pos[B]); 

 

    stepperC.setMaxSpeed(speed[C]); 

    stepperC.setAcceleration(speed[C] * 0.70); 

    stepperC.moveTo(pos[C]); 

 

    // Run steppers to target position 

    while (stepperA.distanceToGo() != 0 || stepperB.distanceToGo() != 0 || stepperC.distanceToGo() != 0) { 

      stepperA.run(); 

      stepperB.run(); 

      stepperC.run(); 

    } 

  } else { 

    debugln("Ball NOT Detected :( "); 

 

    for (int i = 0; i < 3; i++) { 

      pos[i] = round((angleOrigin - plant.theta(i, hz, 0, 0)) * angleToStep * gearRatio); 

    } 

 

    debugln((String) "Angle A = " + pos[0] / (angleToStep * gearRatio) + " degrees"); 

    debugln((String) "Angle B = " + pos[1] / (angleToStep * gearRatio) + " degrees"); 

    debugln((String) "Angle C = " + pos[2] / (angleToStep * gearRatio) + " degrees"); 

 

    // Set Stepper Max Speed and target position 

    stepperA.setMaxSpeed(6000); 

    stepperA.moveTo(pos[A]); 

 

    stepperB.setMaxSpeed(6000); 

    stepperB.moveTo(pos[B]); 

 

    stepperC.setMaxSpeed(6000); 

    stepperC.moveTo(pos[C]); 

 

    // Run steppers to target position 

    while (stepperA.distanceToGo() != 0 || stepperB.distanceToGo() != 0 || stepperC.distanceToGo() != 0) { 

      stepperA.run(); 

      stepperB.run(); 

      stepperC.run(); 

    } 

  } 
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} 

 

/// @fn Convert pixel coordinates to real-world coordinates in millimeters 

void convertToMillimeters(double &pixelX, double &pixelY) { 

  // Convert the pixel positions to positions within the hexagonal platform's circumscribed circle 

  // Assuming linear transformation, map the pixel range to the circumscribed radius 

 

  pixelX = (pixelX / 208.0) * 2 * circumscribedRadius;  // Scaling X based on pixel range and radius 

  pixelY = (pixelY / 316.0) * 2 * circumscribedRadius;  // Scaling Y based on pixel range and radius 

 

  // Ensure ball position stays within the platform's circular bounds 

  double distanceFromCenter = sqrt(pixelX * pixelX + pixelY * pixelY); 

  if (distanceFromCenter > circumscribedRadius) { 

    // Ball is outside the platform bounds 

    debugln("Warning: Ball is outside the platform!"); 

  } 

} 
 

 

InverseKinematics.cpp 
#include "InverseKinematics.h" 

 

// Define constants for calculations 

double SQRT_3_OVER_2 = sqrt(3.0) / 2.0; 

 

constexpr double HEIGHT_OFFSET = 77.69;  // Offset for height calculation 

constexpr double GRAVITY = 9.81; 

constexpr double COEFF = 7.0 / (5.0 * GRAVITY); 

 

// Constructor initializes constants and end effector/base positions 

Plant::Plant(double _b, double _p, double _f, double _s) : b(_b), p(_p), f(_f), s(_s) { 

    // Initialize end effector positions 

    endEffector[A][0] = p; 

    endEffector[A][1] = 0; 

    endEffector[B][0] = -0.5 * p; 

    endEffector[B][1] = SQRT_3_OVER_2 * p; 

    endEffector[C][0] = -0.5 * p; 

    endEffector[C][1] = -SQRT_3_OVER_2 * p; 

     

    // Initialize base positions 

    basePrisJoint[A][0] = p; 

    basePrisJoint[A][1] = 0; 

    basePrisJoint[B][0] = -0.5 * p; 

    basePrisJoint[B][1] = SQRT_3_OVER_2 * p; 

    basePrisJoint[C][0] = -0.5 * p; 

    basePrisJoint[C][1] = -SQRT_3_OVER_2 * p; 

} 

 

double Plant::theta(int leg, double H, double xe, double ye) { 

    // Calculate height and tilt angles 

    double Hz = H + HEIGHT_OFFSET; 

    double alpha = ye * COEFF * DEG_TO_RAD; 

    double beta = xe * COEFF * DEG_TO_RAD; 

 

    // Precompute trigonometric values 

    double cos_alpha = cos(alpha); 

    double sin_alpha = sin(alpha); 

    double cos_beta = cos(beta); 

    double sin_beta = sin(beta); 

 

    double nx, ny, nz, length; 

 

    // Calculate length based on the leg 

    switch (leg) { 

        case A: 

            nx = endEffector[A][0] * cos_beta - basePrisJoint[A][0]; 

            nz = Hz - endEffector[A][0] * sin_beta; 

            length = sqrt(nx * nx + nz * nz); 

            break; 

 

        case B: 

            nx = endEffector[B][0] * cos_beta + endEffector[B][1] * sin_beta * sin_alpha - 

basePrisJoint[B][0]; 

            ny = endEffector[B][1] * cos_alpha - basePrisJoint[B][1]; 
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            nz = Hz - endEffector[B][0] * sin_beta + endEffector[B][1] * cos_beta * sin_alpha; 

            length = sqrt(nx * nx + ny * ny + nz * nz); 

            break; 

 

        case C: 

            nx = endEffector[C][0] * cos_beta + endEffector[C][1] * sin_beta * sin_alpha - 

basePrisJoint[C][0]; 

            ny = endEffector[C][1] * cos_alpha - basePrisJoint[C][1]; 

            nz = Hz - endEffector[C][0] * sin_beta + endEffector[C][1] * cos_beta * sin_alpha; 

            length = sqrt(nx * nx + ny * ny + nz * nz); 

            break; 

 

        default: 

            return 0.0;  // Invalid leg, return 0 

    } 

 

    // Calculate the angle and return it in degrees 

    double angle = HALF_PI - acos((length * length + s * s - f * f) / (2 * s * length)); 

    return angle * RAD_TO_DEG; 

} 

 

 

InverseKinematics.h 
#ifndef InverseKinematics_H 

#define InverseKinematics_H 

 

#include <Arduino.h> 

#include <math.h> 

 

// Define servo constants 

#define A 0 

#define B 1 

#define C 2 

 

class Plant { 

  public: 

    Plant(double b, double p, double f, double s); 

    double theta(int leg, double h, double xe, double ye); // returns the angle value of each servo A, B, C 

 

  private: 

    double b;  // distance from the center of the base to any of its corners 

    double p;  // distance from the center of the platform to any of its corners 

    double f;  // length of link #1 

    double s;  // length of link #2 

    double endEffector[3][2]; 

    double basePrisJoint[3][2]; 

}; 

 

#endif 
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