Design and Control of a 3RPS-Stewart Platform for Precision Ball Balancing Using PID and Computer Vision
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Abstract— This paper presents the design and implementation of
a Stewart platform, a 3-DOF parallel manipulator with three linear
actuators, combining revolute, prismatic, and spherical joints. The
project aims to dynamically stabilize a ball on the platform by
precisely regulating its tilt angles using a combination of mechanical
design, mathematical modeling, and digital control system
implementation.

The core of the control system is a proportional-integral-
derivative (PID) algorithm, optimized to maintain the ball's position
at a designated setpoint on the platform. Real-time feedback is
provided by a computer vision camera sensor, operating at 60 frames
per second, which tracks the ball’s position and sends coordinates to
an Arduino Uno R4 microcontroller. Corrective actions calculated
by the controller achieved a settling time of 8.6 seconds,
demonstrating efficient stabilization.

The system's nonlinear dynamics were modeled using the Euler-
Lagrange method to derive stability criteria and inform the PID
design. Continuous-time stability analysis revealed marginal
stability, necessitating precise parameter tuning. A zero-order hold
method with a 0.2-second sampling time enabled discretization for
microcontroller implementation while maintaining performance.

Inverse kinematics translated control commands into stepper
motor actuator positions, allowing precise control of the platform’s
orientation. Iterative prototyping addressed challenges like joint
friction, resolution constraints, and motor limitations. The final
design featured a 1.5-foot diameter platform constructed of 3D-
printed components, and an aluminum platform, demonstrating a
balance between manufacturability and functionality.

This project underscores the integration of low-cost components
and open-source tools to develop scalable control systems. Potential
applications include robotics, automation, and precision handling.
Future work aims to incorporate faster microcontrollers for
improved response and expand functionality to handle more complex
dynamics.
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vision tracking, dynamic stabilization, motion control system

I. INTRODUCTION

The Stewart platform is a type of parallel manipulator widely
recognized for its precision and versatility in applications such
as motion simulation, robotics, and automation. This project
aims to develop a simplified Stewart platform configured for
three degrees of freedom (3-DOF) to dynamically balance a ball.
The system combines mechanical design, mathematical
modeling, and control system implementation to achieve precise
motion control and stability.

The platform’s design focuses on cost-effectiveness and
scalability by integrating low-cost components such as an
Arduino microcontroller and a Pixy2 camera for computer
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vision. A proportional-integral-derivative  (PID) control
algorithm uses real-time feedback to adjust the platform’s tilt
angles and stabilize the ball. The system demonstrates how
advanced mechatronic concepts can be implemented with
accessible tools, making it a valuable case study for robotics and
educational research.

The following subsections detail the system’s key
components, including position detection and mechanical
construction, and outline their contributions to the overall design
and functionality.

A. Position Detection

Accurate position detection is vital for the success of the
ball-balancing system. The primary requirement of the position
sensor is to provide real-time feedback with sufficient resolution
and speed to track the ball's movement. After evaluating various
alternatives, including piezoelectric sensors and computer
vision, the Pixy2 camera sensor was selected due to its onboard
image processing capabilities and 60 frames per second speed.
This camera allows for effective tracking of the ball's position in
the X, Y, and Z axes without overburdening the microcontroller.

Figure 1. PixyMon Camera Feed

The Pixy2 camera simplifies image processing tasks by
filtering pixels, adjusting brightness, and setting signature
thresholds. These features reduce computational demands and
enable quick and accurate data transfer to the Arduino Uno R4
microcontroller. It simply sends out x, y, and z coordinates to be
interpreted by the Arduino. This combination ensures that
corrective actions can be calculated and executed in near real-
time. In Figure 1 above, the live camera feed can be seen as it
looks it the PixyMon software that is used to tune the cameras
parameters. Parameters such as pixel filtering, brightness, and
signature thresholds can all be modified in the software that is
included with the Pixy2 camera.



Alternative approaches, such as using multiple infrared or
ultrasonic and piezoelectric sensors, were considered but
deemed less effective due to their limited precision in
continuous tracking and increased system complexity. The
camera's ability to provide detailed positional data proved
crucial in achieving the project’s accuracy and responsiveness
goals.

B. Mechanical Construction

The mechanical construction of the platform, referred to as
the plant, plays a central role in ensuring stability and precision.
The primary requirements of the plant are rigidity, low friction
at joints, and compatibility with the chosen actuation methods.
A Stewart platform design was chosen for its inherent stability
and ability to achieve three degrees of freedom. Compared to
alternative designs, such as six-degree-of-freedom (6-DOF)
platforms, the simplified 3-DOF configuration reduced cost and
complexity while still meeting the project’s goals. Looking at
Figure 2, the different possible configurations for a Stewart
Platform can visualized. We each considered these designs when
designing our application.
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Figure 2: Common Stewart Platform Configurations

The plant incorporates three linear actuators, each powered
by Nema 17 stepper motors with integrated encoders for closed-
loop control. Bearings were added at moving joints to reduce
friction and wear, ensuring smooth operation and prolonged
durability. The frame and actuators were constructed using
aluminum for its strength-to-weight ratio, while 3D-printed
components were used for custom fittings to maintain cost
efficiency and manufacturability.

Figure 3: CAD Model of our system

The chosen actuation method relies on revolute, prismatic,
and spherical (RPS) joints, which allow precise control of the
platform's orientation. The actuators translate control signals
into platform tilt adjustments, enabling accurate compensation
for ball movement. Alternative configurations, such as 6-DOF

platforms or systems with pneumatic actuators, were considered
but excluded due to their higher cost and increased system
complexity. As shown above in Figure 3, the actuators and entire
system CAD model can be seen, showing the actuators and their
design.

This design strikes a balance between functionality,
affordability, and manufacturability, making it a practical choice
for both research and educational purposes.

I1. SYSTEM DESIGN

The design of the Stewart platform emphasizes the
integration of mechanical precision, effective actuation, and
vision-based feedback to achieve dynamic ball balancing with
three degrees of freedom (3-DOF). This section focuses on the
platform’s mechanical configuration, actuation systems, and
vision integration.

The mechanical structure of the platform is constructed
primarily from aluminum, chosen for its combination of
strength, durability, and lightweight properties. The circular
platform has a diameter of 1.5 feet, providing a controlled area
for ball movement. The base plate, also made of aluminum,
serves as a rigid foundation, ensuring stability and reducing
vibrations during operation. Bearings are incorporated at all
moving joints to minimize friction and mechanical wear,
enhancing long-term performance and reliability.

Actuation is achieved through three linear actuators, each
driven by NEMA 17 stepper motors equipped with a 5.18:1
planetary gearbox for enhanced precision and torque. These
actuators are connected to the platform and the base plate using
revolute, prismatic, and spherical (RPS) joints. The revolute
joint enables angular control at the motor, the prismatic joint
facilitates linear motion, and the spherical joint allows multi-
directional tilting. This arrangement ensures that the platform
can achieve precise tilt and height adjustments, as required for
maintaining the ball’s stability.

The Pixy2 camera is employed as the primary feedback
sensor, offering real-time tracking of the ball’s position in three
dimensions. Mounted directly above the platform, the camera
provides an unobstructed view, capturing positional data at 60
frames per second. Onboard processing within the camera
extracts the ball’s coordinates, which are then transmitted to an
Arduino Uno R4 microcontroller for use in the control
algorithm. This approach reduces computational demands on the
microcontroller and simplifies the system architecture compared
to alternative sensor configurations. The final design and linear
actuators can be seen below in Figure 4, showing the tall camera



stand which served as the main source of feedback for our
system as well as the stepper motors and drivers.

Figure 4: Final Design

The actuation process is driven by the results of inverse
kinematics calculations, which determine the necessary
adjustments in actuator lengths to achieve the desired platform
tilt and height. Stepper motor movements execute these
adjustments, translating control signals into precise physical
changes in platform orientation. The closed-loop feedback
system continuously monitors the ball’s position and updates the
actuator commands, allowing for rapid compensation of
disturbances.

Power is supplied by a 24V system that provides consistent
energy to the stepper motors, ensuring smooth and reliable
operation. The Arduino Uno R4 coordinates all components,
integrating vision feedback with actuation control to maintain
dynamic stability. The platform’s compact and robust design,
combined with efficient vision-based feedback, enables precise
motion  control  while  maintaining  simplicity and
manufacturability.

I1l. MATHEMATICAL MODELING

A. Inverse Kinematics

In order to accurately model the dynamic behavior of a
mobile platform, it is crucial to establish the relationship
between the platform's position and orientation, the joint
variables, and its geometric parameters. For platforms like the
Stewart platform, two primary approaches are used: inverse
kinematics and direct kinematics.

Direct kinematics involves solving a set of nonlinear
equations to determine the position and orientation of the
manipulator when the lengths of the actuators are known.
However, this method can lead to multiple solutions. For
example, a servo-controlled Stewart platform generates a system
of 18 equations with up to 40 possible solutions [1]. In contrast,
inverse kinematics provides a more practical and efficient
approach. It simplifies the process by calculating the actuator
lengths and motor parameters directly from the desired position
or tilt angles of the upper platform. This avoids the complexity
of determining the platform's position and orientation based on
actuator conditions and operating parameters.

Figure 5: Physical Structure of platform with linear
actuators

Given these advantages, inverse kinematics is particularly
well-suited for deriving the dynamic model of the platform. By
focusing on the variations in distances between the upper
platform and the fixed lower platform, as well as the motor
parameters, the desired position of the platform can be
effectively achieved. This approach ensures precise and stable
control in dynamic applications.

Figure 6: Platform Rotation i, linear actuator

In Figure 6, relative to the center of the platform, the i,
vector p; denotes the location of the spherical joint in the
platform and the vector b; denotes the location of the rotational
joint at the motor or base. The vector T is the vertical
translational reference distance between the base and the
platform. The vector [; denotes the length of the i;; actuator,
required to tilt the platform based on the roll or pitch angle of
the platform. The vector _Q—{ defines the coordinates of the anchor
point p; relative to the base plate given by,

Q=T,+R}P @)

where, ﬁ; is the location of the of the spherical end-effector from
the origin of the platform in the reference frame of the platform.
EZ is the location of the rotational joint expressed in the reference
frame of the base plate.



Figure 7: Platform and Base location of end-effectors

The rotational matrix R, is the rotation matrix, of the
platform frame with respect to the base, given by the
combination of each rotation R, (roll angle ), R,, (pitch angle

B), and R, (yaw angle y),

1 0 0
R, =0 cosa —sina @)
0 sina cosa
cosf 0 sing
R, = 0 1 0 l 3)
—sinff 0 cospf
cosyp —sinyp O 1 0 O
R, = |[siny cosy Ol = [0 1 0] 4
0 0 1 0 0 1

Note that the rotation matrix about the yaw angle is
evaluated as the identity matrix since there is no rotation about
the z-axis due to design of the system, therefore i = 0. Thus,
the rotational matrix is given by,

R, =R, R,"R,

cosff sina-sinff sinf-cosa
RI=| 0 cosa —sina l (5)
—sinff cosf-sina cosa-cosf
Finally, the length of the i,;, parallel actuator is found to be,
L=T,+R)-F~B (6)

However, the length of the parallel manipulator is achieved
by the rotational angle of the stepper motors as denoted in figure
8!

Figure 8: Linear RPS joint

By applying, the law of cosines and the fixed lengths of the
parallel manipulator, results in the following equation that
relates the angle of the motor 9; and length of the parallel
manipulator ;.

f2=s?+ 12— 2s;l; cos 6, (7

Finally, the angle 6; of the i,;, motor based on the platforms
rotation can be determined by,

9; = cos™? (—liz”iz _fiz) (©))

2sil;

B. Dynamic Modeling

The Stewart platform plant model serves as the foundation
for analyzing the dynamics of a ball-and-plate control system.
This system is a common benchmark in control theory and
robotics due to its complexity and multi-variable nature. It
involves balancing a ball on a rigid plate by adjusting the plate's
tilt angles through actuators. The dynamic model provides a
mathematical framework for designing controllers, simulating
system behavior, and predicting performance under various
conditions. The following section outlines the assumptions,
energy analysis, and derivation of the plant model, culminating
in its transfer functions.

Yp

Figure 9: Ball in plane with pitch and roll rotation

1) Assumptions:
The ball and plate system analyzed under the Stewart
platform model operates under the following assumptions:

1. The ball rolls on the platform without slipping.

2. The ball is a solid, symmetric, and homogeneous

sphere.

3. Friction between the ball and the plate is negligible.
4. The ball maintains continuous contact with the plate.
5. The plate is rigid and homogeneous.

2) Energy Analysis

The Lagrangian formulation simplifies the analysis of our
system by expressing dynamics in terms of kinetic and potential
energy. For the ball-and-plate system, this approach captures
the interaction between the ball’s motion and the plate’s tilt
using generalized coordinates. The resulting equations of



motion form the foundation for control design and stability
analysis.

The dynamic behavior of the system is characterized using
the Lagrange equation, expressed as:

L =2XTO-XV(®) (9)
Where L(t) is the difference between the kinetic energy T
and the potential energy V of the system.

Figure 10: Ball rolling without slipping (pitch 2a)

a) Kinetic Energy

Figure 11: FBD Ball rolling w/out slipping axis rotation

The total kinetic energy consists of contributions from the
ball and the plate:
T =Tyqy + Tplate (10)

Where, the ball's kinetic energy accounts for translational
and rotational motions:

1 1
Tpan = Emvf + Elbwzza (11)
We can define the position vector of the ball from the origin
oftheplate,as s =[x’ ¥’ 0]7, and the linear velocity vector

of the ball from the origin as v, = % =[x" y' o]".Theball
translational kinetic energy can be modeled as,
1 <2 -2
Torans = om (x’ +y’ ) (12)

The angular velocity of the ball can be simplified by the fact
that the linear velocity is proportional to the angular velocity
and the distance from the rotation axis, given by v, = w, X 13,
wherer, =[0 0 1,]7 is the radius of the ball described in
the 3D reference frame. The ball rotational kinetic energy can

be modeled as,
.2 .2
1 ! !
o= 303 ) @

The total kinetic energy of the ball can be modeled by the
following,

.2 .2
1 S22 1 ! !
i Tball = Em (x + y ) + Elb (t_g + };‘_lf) (14)

The plate's kinetic energy includes translational and
rotational motions.

1 1 2
Tplate = Emvg + Elsys (wplate) (15)

The angular velocity of the plate can be modeled by
observation, which is simply the combination of pitch and roll,
A6 . . . . .

wp =5 N the 3-dimensional coordinate system results in
w, = [d B1". Furthermore, the moment of inertia for the

system can be represented as the sum of moments between the
ball and plate given by Isys = Ihqy + Ipiate, thus the plate’s

rotational kinematic motion after linearization can be
represented by,
1 . ;
Toory =3 (Ip + 1) (@ + f?) (16)

The linear velocity of the plate is dependent on the reference
location on the plate from the center of the plate # = [x Y]
and is given by v,=7-@, =xd+yB . The plate
translational kinetic energy can be modeled as.
= Zm(xa + y,[?)2 17)

Tp(trans) T

The total kinetic energy of the plate can be modeled by the
following,
& Tyare = sm(xd +yB) +3(I, +1,)(@* +£%)  (18)
b) Potential Energy
The total potential energy consists of contributions from the
ball and the plate:
V =Vyau + Vplate (19)
However, since the plate is static and always in contact with
the ball, it has no potential energy contribution to the system
Vpiate = 0. The only potential energy contribution to the
system is gravitational effect on the ball given by V4 =
—mgh, where h, is the modeled about the combination of pitch
and roll angles of the plate h = x sina + y sin .
s Vpau = —mg(xsina + ysinf8) (20)

3) Langrian Dynamics

The Euler-Lagrange equation denotes the relationship
between the Lagrangian of a system and the system's equations
of motion. The equation provides a systematic way to derive the
equations of motion for a system using the principle of least
action. The Lagrangian for the ball and plate system is,

-2 .2
B AW P i DS WAL,
L=2m(x"+y )+21b<r§+rg>+2m(xa+yﬁ) +

%(Ip +1,)(d? + %) + mg(xsina + ysinp  (21)



For a system described by a Lagrangian, L(q,q,t), the

Euler-Lagrange equation is,
d (oL

wGe) 3= (22)
where g represents the generalized coordinates, g represents
the time derivatives of these coordinates (generalized
velocities) and t is time. Q represents the generalized non-
conservative forces of the system, in our system they are the
torques generated by the rotational movement of the plate about
the origin represented.

x X 0
q=|u|q= 4.0—[1‘1 (23)
B J4 Ty

After evaluating the Euler-Lagrange with the derived
Lagrangian, and taking the partial derivatives respectively, it
yields the following second order system of equations,

I ., 2 » . B
m+r—2 x —m(xa +yaﬁ+gsma)—0 (24)
b

L) . L
m+ 5 |x —m(xd®+ydf +gsina)=0  (25)

b
dsdfd(26)
\ dd(27)

However, equations (26 & 27), are related to the non-
conservative forces of the system, their solutions are coupled
with the torques of the plate and are not useful for our
application.

Furthermore, the equations can be simplified, by
employing the small angle theorem to approximate sina = «,
since the angle tilt of the platform is very small (much less than
15 degrees), @?>=0, f2=0, a>=0 and @B = 0. This
results in simplified equations,

mx' + i—Zx —-mga =0 (28)
b
N P
my’ + 5y —mgp =0 (29)

where, the moment of inertia is defined as, I;, = Emrbz, it

is important to note that after substituting the moment of inertia
the resulting mathematical model is determined to be
independent of the mass of the ball, which in counter to the
natural assumption that a heavier ball falls faster, however, this
proves that the system is behaving under the assumption of
rolling without slipping.

Finally, the ball and plate Stewart platform can be modeled
by the following set of second order linear equations,

X = gga (30)
' =298 (31)

C. Controller Design

In order to design a controller for this system, a prerequisite
is to check the system’s stability and verify the criterion for
stability. Applying a Laplace transformation to the
mathematical model results in the following continuous time
domain system,

_ AW _ 59
pr(s) T Xx(s) | 7s2 (32)
_B®) _5g
pr (S) TX(s)  7s? (33)
Xa(s) [ p 1 7 M6 5q ()
p s A/ 75t +5g
* [N
]
| L

H(s)

Pixy 2 Camera

Figure 12: Block Diagram of PID System

The block diagram shown in Figure 12 represents the
feedback control loop, where the desired position inputs X, (s)
and Y, (s) are compared to the actual positions X(s) and Y (s)
to compute the error signal E(s). This error is processed
through the PID controller G.(s), which generates the control
input u(t) based on proportional, integral, and derivative
components of the error. Feedback from the Pixy2 camera
system H(s) ensures real-time updates of the ball's position,
enabling continuous correction of platform tilt to maintain
dynamic stability. The diagram highlights the integration of the
vision system, control algorithms, and mechanical actuation,
forming a cohesive feedback loop critical for achieving precise
ball balancing.
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Figure 13: Root Locus of Open Loop

The root locus in Figure 13 shows that the system is
marginally stable as indicated by the two poles located as zero,
this demonstrates that a controller could stabilize the system.

D. Control Law (PID controller)

The chosen controller for this application to stabilize the
system is a PID controller which operates on the principle of
minimizing the error between a desired setpoint and the actual
system output. The control law is defined as:



u(t) = Kye(t) + K; [} e(@)dr + K, =8 (34)

Where, e(t) is the error at time t, calculated as the difference
between the desired and actual position or orientation. Ky,is the
proportional gain, which scales the error, K; is the integral gain,
which accumulates past errors. K, is the derivative gain, which
predicts future error trends.

In Figure 14, it demonstrates the step response in
continuous time domain of the tuned system with a PID
controller utilizing MATLAB’s autotune feature.
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Figure 14: Step Response with tuned PID

The exact values of this tuned controller are not relevant for
our application, it only demonstrates the system’s response to
an applied PID controller and the effectiveness of applying a
control law to stabilize the system. In the real world, the
applications of a continuous time domain controller are not
practical and therefore a discrete time domain controller is
needed for practical applications.

E. Discrete time domain analysis ZOH (Z-Domain)

In modern control systems, the use of a discrete PID
controller is not only advantageous but often necessary.
Discrete controllers are essential because most real-world
systems rely on digital hardware, such as microcontrollers or
microprocessors, which operate in discrete time. These
controllers are inherently designed to process data and compute
outputs at specific intervals, aligning seamlessly with the
periodic nature of sensor feedback and actuation in the system.
For example, the Stewart platform's vision-based feedback
system provides positional data at discrete intervals, making a
discrete PID controller an ideal choice for directly handling this
sampled data.

To design a PID controller for the Stewart platform, a zero-
order hold (ZOH) method was used to discretize the system for
practical application. It works by holding each discrete control
value constant over the sampling interval, creating a piecewise
constant signal that approximates the desired continuous
control input. The z-transform for the discretized plant from
continuous time domain G, (s) to discrete-time, becomes,

Gy(z) = (1 -z )z {22}

N

Gy(2) = (1 -z )2 {3}

2

6@ = G )

The resulting discretized plant can be applied to the control
of the ball on the platform along the coordinate axis and can
therefore be used to describe the motion of the ball along the
x- and y- axes due to symmetry.
The PID control must also be discretized and for this method, a
ZOH with a forward Euler configuration was applied and

resulted in the following control law,

C(2) = Ky + K, + K — (36)
This technique is essential for interfacing digital
controllers with continuous physical systems, ensuring

compatibility and enabling accurate system response. While
simple and effective, ZOH introduces a piecewise nature to the
signal, which may lead to minor lag or high-frequency effects
in fast-changing systems.

IV. IMLEMENTATION AND TESTING

The resulting Discrete-Time functions provided us with a
start for the tuning process. For this application, a sample time
of 0.2 seconds was used. The limiting factor for our feedback
control system being the Pixy2 camera which operates at a
frequency of 60fps which leads to the sample time of 0.2
seconds as our limiting factor. after discretization of our closed
loop feedback system, it results in the following discrete-time
closed-loop transfer function with a tuned PID,

_0.0770823-0.056062%-0.076942+0.0562
1.07723-3.05622+2.9232-0.9438

H(z) (37)
Figure 15 shows the step response of two discretized tuned
responses that were within our desired specifications. The
compared step responses highlight distinct differences between
the fast and slow systems in their closed-loop step responses.
The fast system demonstrates a slower rise time of 1.4 seconds
compared to 1.0 second for the slow system, but it stabilizes
significantly quicker, with a settling time of 8.6 seconds versus
12.8 seconds. Additionally, the fast system exhibits lower
overshoot (22.57%) and a smaller peak amplitude (1.2257),
indicating more controlled and stable behavior. In contrast, the
slow system shows a more aggressive response with higher
overshoot (44.52%) and a peak amplitude of 1.4452, though it
reaches this peak earlier at 2.4 seconds compared to 4.0 seconds
for the fast system. However, the increased overshoot and wider
steady-state range of the slow system (0.8386 to 1.4452)
suggest reduced precision compared to the fast system, which
maintains a narrower steady-state range (0.9048 to 1.2257).
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Figure 15: Discrete Time Closed Loop Step Response

Overall, the fast system is better suited for applications
requiring stability and precision, while the slow system
prioritizes rapid initial response at the expense of overshoot and
settling time.

A. Physical Performance of PID controller

After the system was tuned with a PID controller, the values
of the PID gains were programmed into Arduino Uno (See
Appendix A), the Stewart platform robot. The resulting
response matched our expectations of our designed discrete-
time system. Effectively validating our design of the PID
controller. The fast tuned system physically demonstrated a
settling time of about 8 seconds with some overshoot.

In the Stewart platform application, overshoot allows the
system to reach the desired position or target state faster. In
systems where rapid responses are essential for controlling the
ball's movement on the platform. The presence of overshoot
minimizes the time it takes for the ball to reach a new position.
Overshoot effectively deals with the dynamic and fast-changing
ball's position while maintaining stability and achieving the
control objective. For Example, when the platform is tilted to
counteract the ball's motion, a slight overshoot in the platform's
tilt can ensure the ball's movement is reversed promptly,
minimizing errors before the system settles. However, the
overshoot must be carefully balanced to avoid instability or
excessive oscillations.

V. CONCLUSION

This study successfully developed and implemented a
3RPS-Stewart platform, a compact parallel manipulator, to
dynamically stabilize a ball using precision actuation and a
PID-based closed-loop control system. By leveraging low-cost
components such as the Arduino Uno R4 microcontroller and
Pixy2 camera for real-time vision tracking at 60 frames per
second, the platform achieved a settling time of 8.6 seconds
with controlled overshoot of 22.57%. These metrics were
realized through meticulous integration of mechanical,
electronic, and software systems.

Inverse kinematics computations translated control inputs
into precise platform tilts, enabling seamless dynamic

adjustments. The design optimizes manufacturability and
functionality by combining lightweight aluminum components
with custom 3D-printed fittings. Mathematical modeling using
the Euler-Lagrange method provided a rigorous foundation for
control design, while discretization through a zero-order hold
(sampling time of 0.2 seconds) ensured compatibility with
digital control systems.

The experimental outcomes validated the effectiveness of the
proposed control strategy. The system demonstrated rapid
stabilization with a rise time of 1.4 seconds, minimal steady-
state error, and reliable performance under dynamic conditions.
These achievements highlight the feasibility of creating high-
performance robotic platforms with accessible and cost-
effective technology.

This work paves the way for further exploration in fields like
robotics, automation, and precision handling. Future
enhancements could include the adoption of faster
microcontrollers for improved response times, as well as
expanded capabilities to address more complex dynamic
systems. The results underscore the potential of scalable and
robust mechatronic designs for research, industrial, and
educational applications.
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MAIN.ino

/K ok K ok ok K ok ok Kk ok K ok ok ok ok ok K ok K ok ok K ok ok K ok ok K ok K ok K ok ok K ok ok K ok Kk ok K ok kK kK

3RPS Stewart Platform Ball Bounce & Balance

@description: this program operates a 3DOF RPS Stewart Platform to balance a ball on a platform
using computer vision for position detection & PID controller to control the balls position.
Qauthors: Jose Ramirez & Ethan Lendo

@institution: Cal Poly Pomona, Dept. of Mech. Engineering
@date: 07-22-2024
@version: 1.0

****************************************************/
/* TO-DO

-> tune the PID

-> Develop bounce

-> Develop ball patterns

*/

#include
#include
#include
#include
#include
#include

<Arduino.h>

<Wire.h>

<Pixy2.h>
<AccelStepper.h>
<MultiStepper.h>
"InverseKinematics.h"

#define DEBUG 0 // for debugging 1 is on, else off 0

#if DEBUG ==
#define debug(db) Serial.print (db)
#define debugln(db) Serial.println (db)
#else

#define debug (db)

#define debugln (db)

#endif

// Camera Object
Pixy2 pixy;

// Pixy2 camera offsets (camera's center in pixels)

constexpr double xOffset = 158.0;
constexpr double yOffset = 104.0;
constexpr double zOffset = 0.0;

// Platform and camera parameters
constexpr double circumscribedRadius
constexpr double distanceToPlatform

240.0;
460.0;

double ball[2];
constexpr int x = 0, y
bool detected false;

// X and Y coordinates of the ball
// Define x, y array indexes
// flag to verify ball is detected

1;

// Stepper Motors Object

AccelStepper stepperA (AccelStepper::DRIVER, 9, 8); //(driver type,
AccelStepper stepperB(AccelStepper::DRIVER, 5, 4); //(driver type,
AccelStepper stepperC (AccelStepper::DRIVER, 3, 2); //(driver type,

// Create instance of MultiStepper
MultiStepper steppers;

// Stepper Motor Variables

STEP,
STEP,
STEP,

DIR)
DIR)
DIR)

double speed[3] = {0, 0, 0}; // Motor speed array

double speedPrev[3] = {0, 0, 0}; // Previous motor speed array

int pos[3] = {0, 0, 0}; // Array to hold angle position of each servo
constexpr double angleOrigin = -2.24; // Origin angle at the start

constexpr double ks = 500.0; // Speed multiplier constant

constexpr double angleToStep = 3200.0 / 360.0; // Convert angle to step count
constexpr double gearRatio = 5.18;

// PID Constants (2s settling time)

double kp = 0.072, ki = 0.0025, kd = 0.07;

//double kp = 0.075, ki = 0.0025, kd = 0.07; //pretty good

//double kp = 0.068, ki = 0.0025, kd = 0.078; // almost perfect
//double kp = 0.068, ki = 0.002, kd = 0.25

//double kp = 0.03263, ki = 0.001886, kd = 0.1411;

//double kp = 0.01658, ki = 0.0008346, kd = 0.0823;

//double kp = 0.04302, ki = 0.002855, kd = 0.1621;

//double kp = 0.07756, ki = 0.004005, kd = 0.3755;

double error[2] = {0, 0}, errorPrev[2] = {0, 0}, integr[2] = {0, 0},

// PID terms for X and Y directions

10

deriv (2]

// Updated x offset of the platform's center in pixels
// Updated y offset of the platform's center in pixels

// 240 Radius of the circumscribed circle for the hexagon in mm
// Distance from camera to the platform in mm

Driver A
Driver B
Driver C

(microsteps * gearRatio / 360 degrees)

{0, 0}, out[2] = {0, O}, outf[2]



// Add a sample time for PID calculations
constexpr unsigned long sampleTime = 20; // Sample time in milliseconds

// Variables for PID timing
unsigned long lastPIDTime = 0;
// Variables to capture initial times

/* Plant(b, p, £, 9)
b = distance from the center of the base to any of its corners
P = distance from the center of the platform to any of its corners
f = length of link #1
s = length of link #2

x/
Plant plant(125.0, 125.0, 100.0, 60.0);

// Function Declarations

void moveTo (double hz, double nx, double ny);

void findBall();

void PID(double setPointX, double setPointY);

void convertToMillimeters (double &pixelX, double &pixelY);

L1177 0700000777777 777 777707 777777777777777777777777777777777777777777777777777
i

/// @brief Arduino setup() Function.

/17

/17 This function initializes serial communication with PIXY2 and the initial servo
/// parameters needed to initialize the platform.

/17

LILLLLT 0000077000770 7770777770777 7707777777 777777777777777777777777777777777
void setup () {

// Initialize Serial communication
Serial.begin(115200) ;

// Initialize Pixy2
pixy.init();

// Optionally turn on Pixy2's LED
// pixy.setLamp(l, 1);

// Set max speed and acceleration for steppers
stepperA.setMaxSpeed (6000) ;
stepperA.setAcceleration (3000);

stepperB.setMaxSpeed (6000) ;
stepperB.setAcceleration (3000) ;

stepperC.setMaxSpeed (6000) ;
stepperC.setAcceleration (3000) ;

// SteppersControl instance for multi stepper control
steppers.addStepper (stepperA) ;
steppers.addStepper (stepperB) ;
steppers.addStepper (stepperC) ;

moveTo (37.75, 0, 0); // Moves the platform to the home position located at hz=37.75mm
delay (100) ;
}

R NN
/117

/// @brief Main Arduino Loop () Function.
/17
/// This loop executes the PID control of the Platform.
/17
A
void loop () {
PID(0, 0); // (X setpoint, Y setpoint)
}

/// @fn Find the location of the ball using the pixy2 cam
void findBall () {

// Request blocks (objects) from Pixy2

int numBlocks = pixy.ccc.getBlocks();

debugln ((String) "Number of Balls Detected: " + numBlocks);

if (numBlocks == 1) {
detected = true;

// Set current X and Y coordinates for object 0 (assuming this is the ball)

ball([x] = pixy.ccc.blocks[0].m_y; // Absolute Y location of the ball, now treated as X
ball[y] = pixy.ccc.blocks[0].m_x; // Absolute X location of the ball, now treated as Y
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debugln ( (String) "Absolute (X, Y) pixels: (" + ball[x] + ", " + balllyl + ")");
Serial.println((String)"Absolute (X, Y) pixels: (" + ball[x] + ", " + ballly] + "™)");

// Calculate relative coordinates based on the center of the camera's field of view

ball[x] -= yOffset;
ballly] -= xOffset;
debugln ((String) "Relative (X, Y) pixels: (" + ball[x] + ", " + ballly] + ")");

// Convert relative coordinates (pixels) to real-world coordinates (mm)
convertToMillimeters (ball[x], ballly]);

debugln ((String)"Real-world (X, Y) mm: (" + ball[x] + ", " + ballly] + ")");

} else {
detected = false;
if (numBlocks > 1) {
debugln ("MULTIPLE BALLS DETECTED!");
} else {
debugln ("NO BALL DETECTED");

}

/// @fn PID control to calculate platform movement based on setpoints
// Variables for time management

unsigned long previousTimePID = 0;

double elapsedTimePID;

// Updated PID Function
void PID(double setPointX, double setPointY) {
findBall(); // Find the location of the ball

if (detected) {
// Calculate elapsed time since last PID calculation
unsigned long currentTimePID = millis();
elapsedTimePID = (currentTimePID - previousTimePID) / 1000.0; // Convert ms to seconds
previousTimePID = currentTimePID;

for (int 1 = 0; 1 < 2; 1i++) {
// Determine which axis we're calculating for (0 = X, 1 =Y)
double setPoint = (1 == 0) ? setPointX : setPointY;
double currentPos = (i == 0) ? ball[x] : balllyl;

// Calculate the error
error[i] = currentPos - setPoint;

// Proportional term
double Pout = kp * error[i];

// Integral term with windup guard

integr[i] += error[i] * elapsedTimePID;

// Limit for the integral to avoid windup
integr[i] = constrain(integr[i], -1000, 1000);
double Iout = ki * integr[i];

// Derivative term (rate of change of error)

deriv[i] = (error[i] - errorPrev[i]) / elapsedTimePID;

deriv[i] = isnan(deriv[il]) || isinf(deriv[i]) ? 0 : deriv[i]; // Check for validity
double Dout = kd * deriv[i];

// PID output for the axis

out[i] = Pout + Iout + Dout;

//outf[i] = constrain(out[i], -5, 5);:
Serial.println((String) "I = " + Iout);

// Store the current error as previous error for next loop

errorPrev([i] = error[i];
}
} else {
// I1If ball not detected, retry finding
findBall () ;

// Move the platform based on PID output
moveTo (37.75, -out[0], -out[l]);
delay(5);

// Debugging output to monitor PID terms and output

debugln ((String) "X OUT = " + out[0] + " Y OUT = " + out[l]);
Serial.print ("X Input:");

Serial.print (ball([x]);
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Serial.print(",");
Serial.print ("X_Output:");
Serial.println(out[0]);

Serial.print ("Y_ Input:");
Serial.print (ballly]);
Serial.print(",");
Serial.print ("Y Output:");
Serial.println(out[1]);

}

’
Y7
(o

/// @fn moves the steppers to the desired position based on the given X & Y coordinates
/// @param hz height of the z translation from the platform.
/// @param nx X- coordinate position of the ball relative to origin
/// @param ny Y- coordinate position of the ball relative to origin
void moveTo (double hz, double nx, double ny) {

// Check if ball is detected

if (detected) {

debugln ("Ball Detected :) ");

// Calculate Stepper position
for (int 1 = 0; 1 < 3; 1i++) {

pos[i] = round((angleOrigin - plant.theta (i, hz, nx, ny)) * angleToStep * gearRatio);

// Calculate Stepper Motor Speeds

speedPrev[i] = speed[i];
speed[i] = abs(pos[i] - ((i == 0) ? stepperA.currentPosition() : (i == 1) ? stepperB.currentPosition()
stepperC.currentPosition())) * ks;
speed[i] = constrain(speed[i], speedPrev[i] - 500, speedPrev[i] + 500); // Limit speed change to smooth movement
speed[i] = constrain(speed[i], 0, 5000);
}
debugln ((String) "Angle A = " + pos[0] / (angleToStep * gearRatio) + " degrees");
debugln ((String) "Angle B = " + pos[l] / (angleToStep * gearRatio) + " degrees");
debugln ((String) "Angle C = " + pos[2] / (angleToStep * gearRatio) + " degrees");

// Set Calculated speed and target position
stepperA.setMaxSpeed (speed[A]) ;
stepperA.setAcceleration (speed[A] * 0.70);
stepperA.moveTo (pos[A]) ;

stepperB.setMaxSpeed (speed[B]) ;
stepperB.setAcceleration (speed[B] * 0.70);
stepperB.moveTo (pos[B]) ;

stepperC.setMaxSpeed (speed[C]) ;
stepperC.setAcceleration (speed[C] * 0.70);
stepperC.moveTo (pos[C]) ;

// Run steppers to target position

while (stepperA.distanceToGo() != 0 || stepperB.distanceToGo() != 0 || stepperC.distanceToGo() != 0) {
stepperA.run() ;
stepperB.run() ;
stepperC.run() ;

}

} else {
debugln ("Ball NOT Detected :( ");
for (int 1 = 0; 1 < 3; 1i++) {

pos[i] = round((angleOrigin - plant.theta(i, hz, 0, 0)) * angleToStep * gearRatio);

}
debugln ((String) "Angle A = " + pos[0] / (angleToStep * gearRatio) + " degrees");
debugln ((String) "Angle B = " + pos[l] / (angleToStep * gearRatio) + " degrees");
debugln ((String) "Angle C = " + pos[2] / (angleToStep * gearRatio) + " degrees");

// Set Stepper Max Speed and target position
stepperA.setMaxSpeed (6000) ;
stepperA.moveTo (pos [A]) ;

stepperB.setMaxSpeed (6000) ;
stepperB.moveTo (pos [B]) ;

stepperC.setMaxSpeed (6000) ;
stepperC.moveTo (pos[C]) ;

// Run steppers to target position

while (stepperA.distanceToGo() != 0 || stepperB.distanceToGo() != 0 || stepperC.distanceToGo() != 0) {
stepperA.run() ;
stepperB.run () ;
stepperC.run() ;
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}

/// @fn Convert pixel coordinates to real-world coordinates in millimeters

void convertToMillimeters (double &pixelX, double &pixelY) ({
// Convert the pixel positions to positions within the hexagonal platform's circumscribed circle
// Assuming linear transformation, map the pixel range to the circumscribed radius

pixelX = (pixelX / 208.0) * 2 * circumscribedRadius; // Scaling X based on pixel range and radius
pixelY = (pixelY / 316.0) * 2 * circumscribedRadius; // Scaling Y based on pixel range and radius

// Ensure ball position stays within the platform's circular bounds
double distanceFromCenter = sqrt(pixelX * pixelX + pixelY * pixelY);
if (distanceFromCenter > circumscribedRadius) {

// Ball is outside the platform bounds

debugln ("Warning: Ball is outside the platform!");

}

InverseKinematics.cpp
#include "InverseKinematics.h"

// Define constants for calculations
double SQRT 3 OVER 2 = sqrt(3.0) / 2.0;

constexpr double HEIGHT OFFSET = 77.69; // Offset for height calculation
constexpr double GRAVITY = 9.81;
constexpr double COEFF = 7.0 / (5.0 * GRAVITY);

// Constructor initializes constants and end effector/base positions
Plant::Plant (double b, double p, double f, double s) : b(Db), p(p), £( f), s( s)
// Initialize end effector positions

endEffector[A] [0] = p;
endEffector[A][1] = O;
endEffector[B] [0] = -0.5 * p;
endEffector[B] [1] = SQRT 3 OVER 2 * p;
endEffector[C] [0] = -0.5 * p;
endEffector[C] [1] = -SQRT 3 OVER 2 * p;

// Initialize base positions

basePrisJoint [A] [0] = p;
basePrisJoint[A] [1] = O;
basePrisJoint [B] [0] = -0.5 * p;
basePrisJoint[B] [1] = SQRT 3 OVER 2 * p;
basePrisJoint[C] [0] = -0.5 * p;
basePrisJoint[C] [1] = -SQRT 3 OVER 2 * p;

double Plant::theta(int leg, double H, double xe, double ye) {
// Calculate height and tilt angles
double Hz = H + HEIGHT OFFSET;
double alpha = ye * COEFF * DEG _TO RAD;
double beta = xe * COEFF * DEG_TO_RAD;

// Precompute trigonometric values
double cos_alpha = cos(alpha);
double sin_alpha = sin(alpha);
double cos beta = cos(beta);
double sin beta = sin(beta);

double nx, ny, nz, length;

// Calculate length based on the leg
switch (leg) {
case A:
nx = endEffector[A][0] * cos beta - basePrisJoint[A][0];
nz = Hz - endEffector[A][0] * sin beta;

length = sqgrt(nx * nx + nz * nz);
break;
case B:
nx = endEffector[B] [0] * cos beta + endEffector[B][1] * sin beta * sin alpha -
basePrisJoint [B] [0];

ny endEffector[B] [1] * cos alpha - basePrisJoint([B][1];
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nz = Hz - endEffector[B][0] * sin beta + endEffector([B][l] * cos beta * sin alpha;
length = sgrt(nx * nx + ny * ny + nz * nz);

break;
case C:
x = endEffector[C] [0] * cos beta + endEffector[C][1] * sin beta * sin alpha -
basePrisJoint [C] [0];
ny = endEffector[C][1] * cos alpha - basePrisJoint([C][1];
nz = Hz - endEffector[C][0] * sin beta + endEffector([C][l] * cos beta * sin alpha;
length = sqgrt(nx * nx + ny * ny + nz * nz);
break;
default:
return 0.0; // Invalid leg, return 0

}

// Calculate the angle and return it in degrees
double angle = HALF PI - acos((length * length + s * s - £ * f) / (2 * s * length));
return angle * RAD TO_DEG;

InverseKinematics.h
#ifndef InverseKinematics H
#define InverseKinematics H

#include <Arduino.h>
#include <math.h>

// Define servo constants
#define A 0
#define B 1
#define C 2

class Plant {
public:
Plant (double b, double p, double f, double s);
double theta(int leg, double h, double xe, double ye); // returns the angle value of each servo A, B, C

private:
double b; // distance from the center of the base to any of its corners
double p; // distance from the center of the platform to any of its corners

double f; // length of link #1
double s; // length of link #2
double endEffector[3][2];
double basePrisJoint[3][2];

}i

#endif

15



APPENDIX 2

16



] 4x ©0.20
1 1 B
N | ~ o
= N D 4x ©0.16
% o~l — RN
90 047 o ~—FF ©&
') N : :
s <0 - Ll o o +
i < ~ S L
D039 _fg + 3l o028
2XP0.31 ] 1
< 0.31
1.18 ¢ 0.79
0.59
2.17 “
v
1.18 ~
0.19
2.17
UNLESS OTHERWISE SPECIFIED: NAME DATE
DIMENSIONS ARE IN INCHES DRAWN
FRACTIONAL® CHECKED TITLE:
MGTIACK: 01 0 e
THREE PLACE DECIMAL * MFG APPR. S
Base-Stepper
PROPRIETARY AND CONFIDENTIAL TOLERANCING PER: COMMENTS:
e T SZE DWG. NO. ReV
<INSERT COMPANY NAME HERE>. ANY ENSH A
SICIOMI A o uson
<INSERT COMPANY NAME HERE> IS
PROHIBITED. APPLICATION DO NOT SCALE DRAWING SCALE: 1:4 WEIGHT: SHEET 1 OF 1
$ ]
SOLIDWORKS Educational Product. For Instructional Use Only.



@ 1.43

0.96

PROPRIETARY AND CONFIDENTIAL

THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF
<INSERT COMPANY NAME HERE>. ANY
REPRODUCTION IN PART OR AS A WHOLE
WITHOUT THE WRITTEN PERMISSION OF

<INSERT COMPANY NAME HERE> IS
PROHIBITED. APPLICATION

N
SOLIDWORKS Educational Product. For Instructional Use Only.

NEXT ASSY USED ON

UNLESS OTHERWISE SPECIFIED:

DIMENSIONS ARE IN INCHES
TOLERANCES:

FRACTIONAL +

ANGULAR: MACH+  BEND #
TWO PLACE DECIMAL  *
THREE PLACE DECIMAL *

INTERPRET GEOMETRIC
TOLERANCING PER:

MATERIAL

FINISH

DO NOT SCALE DRAWING

NAME
DRAWN
CHECKED
ENG APPR.
MFG APPR.

Q.A.
COMMENTS:

DATE

TITLE:

Stepper_Spacer

SIZE DWG. NO.

A

SCALE: 1:1

]

WEIGHT:

REV

SHEET 1 OF 1

A



0.87

o i
J@O.@ J
B _| $0.63

_47_4
0.3
1 ; |
i (o)
. ] $0.12 (o]
S 0.51
ECTION a-a 0.94

UNLESS OTHERWISE SPECIFIED: NAME DATE
DIMENSIONS ARE IN INCHES DRAWN

TOLERANCES: N
FRACTIONAL + CHECKED TITLE:

ANGULAR: MACH+  BEND #
TWO PLACE DECIMAL  * ENG APPR.

THREE PLACE DECIMAL * MFG APPR. AC -I- U O -I-O r ASS e m

INTERPRET GEOMETRIC QA.
PROPRIETARY AND CONFIDENTIAL :
THE INFORMATION CONTAINED IN THIS TOA}TEERR;I\;LC e COMMENTS:
M
DRAWING IS THE SOLE PROPERTY OF SIZE DWG. NO. REV
<INSERT COMPANY NAME HERE>. ANY
REPRODUCTION IN PART OR AS A WHOLE FINISH
WITHOUT THE WRITTEN PERMISSION OF NEXT ASSY USED ON
<INSERT COMPANY NAME HERE> IS
PROHIBITED. APPLICATION DO NOT SCALE DRAWING SCALE: 1:2 WEIGHT: SHEET 1 OF 1

SOLIDWORKS Educational Product. For Instructional Use Only.



®0.71

}__
4

}__

4x00.13

_{
R
N

0.04

0.20

PROPRIETARY AND CONFIDENTIAL

THE INFORMATION CONTAINED IN THIS

DRAWING IS THE SOLE PROPERTY OF

<INSERT COMPANY NAME HERE>. ANY

REPRODUCTION IN PART OR AS A WHOLE

WITHOUT THE WRITTEN PERMISSION OF NEXT ASSY

<INSERT COMPANY NAME HERE> IS

PROHIBITED. APPLICATION

N

USED ON

SOLIDWORKS Educational Product. For Instructional Use Only.

UNLESS OTHERWISE SPECIFIED:

DIMENSIONS ARE IN INCHES
TOLERANCES:

FRACTIONAL +

ANGULAR: MACH+  BEND #
TWO PLACE DECIMAL  *
THREE PLACE DECIMAL *

INTERPRET GEOMETRIC
TOLERANCING PER:

MATERIAL

FINISH

DO NOT SCALE DRAWING

©0.71

| —

7

0.04

©0.61

0.24

DRAWN
CHECKED
ENG APPR.
MFG APPR.
Q.A.

COMMENTS:

NAME

DATE

TITLE:

SIZE DWG. NO.

Aearing_ shaft

SCALE: 2:1 WEIGHT:

]

SHEET 1 OF 1



0.43

R e
| I
Lo
N
o
T 0.22 o RO.15 R
—
3x00.12 % 0.11
D /_\ i
™ Q _’7,%
B P b
0.08 B o
™
N
(@) o~
™
o 0.08 S
8 N
& | o = )
I I
%/ 039 0.35
&/ O
UNLESS OTHERWISE SPECIFIED: NAME |  DATE
DIMENSIONS ARE IN INCHES DRAWN
TOLERANCES: TlTLE
FRACTIONAL* CHECKED :
ANGULAR: MACH#  BEND *
TWO PLACE DECIMAL  * ENG APPR. .
THREE PLACE DECIMAL * MFG APPR. P Ixy2 C O S e
INTERPRET GEOMETRIC QA. —
PROPRIETARY AND CONFIDENTIAL TOLERANCING PER: COMMENTS:
THE INFORMATION CONTAINED IN THIS MATERIAL ’
DRAWING IS THE SOLE PROPERTY OF SIZE DWG. NO. REV
<INSERT COMPANY NAME HERE>. ANY
REPRODUCTION IN PART OR AS A WHOLE FINISH
WITHOUT THE WRITTEN PERMISSION OF NEXT ASSY USED ON
<INSERT COMPANY NAME HERE> IS
PROHIBITED. APPLICATION DO NOT SCALE DRAWING SCALE: 1:1 WEIGHT: SHEET 1 OF 1
f) ‘I

SOLIDWORKS Educational Product. For Instructional Use Only.



0.59
B

o
«
0.31

o~
™
o

6.50

UNLESS OTHERWISE SPECIFIED: NAME DATE
DIMENSIONS ARE IN INCHES DRAWN

TOLERANCES: N A
FRACTIONAL + CHECKED TITLE:

ANGULAR: MACH+  BEND #
TWO PLACE DECIMAL  * ENG APPR.

THREE PLACE DECIMAL * MFG APPR. Bose_con nec.l.or

INTERPRET GEOMETRIC QA.
PROPRIETARY AND CONFIDENTIAL :
THE INFORMATION CONTAINED IN THIS TOA}TEERR;I\;LC e COMMENTS:
M
DRAWING IS THE SOLE PROPERTY OF SIZE DWG. NO. REV
<INSERT COMPANY NAME HERE>. ANY
REPRODUCTION IN PART OR AS A WHOLE FINISH
WITHOUT THE WRITTEN PERMISSION OF NEXT ASSY USED ON
<INSERT COMPANY NAME HERE> IS
PROHIBITED. APPLICATION DO NOT SCALE DRAWING SCALE: 1:3 WEIGHT: SHEET 1 OF 1

SOLIDWORKS Educational Product. For Instructional Use Only.



RO.59

1.33

0.03

1.04

D1.26

3x00.16

D1.42

0.39

0.39

PROPRIETARY AND CONFIDENTIAL

THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF

<INSERT COMPANY NAME HERE>. ANY

REPRODUCTION IN PART OR AS A WHOLE

WITHOUT THE WRITTEN PERMISSION OF NEXT ASSY USED ON

<INSERT COMPANY NAME HERE> IS
PROHIBITED. APPLICATION

N
SOLIDWORKS Educational Product. For Instructional Use Only.

UNLESS OTHERWISE SPECIFIED:

DIMENSIONS ARE IN INCHES
TOLERANCES:

FRACTIONAL +

ANGULAR: MACH+  BEND #
TWO PLACE DECIMAL  *
THREE PLACE DECIMAL *

INTERPRET GEOMETRIC
TOLERANCING PER:

MATERIAL

FINISH

DO NOT SCALE DRAWING

DRAWN

CHECKED
ENG APPR.
MFG APPR.

Q.A.
COMMENTS:

NAME

DATE

1.09

3.66

0.39

TITLE:

Input_actuator

SIZE DWG. NO.

A

SCALE: 1:1

]

WEIGHT:

REV

SHEET 1 OF 1



